Event-Generator Tuning — Overview
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Tuning at Parton Level (?)

Purist: you should not tune perturbation theory!

Uncalculated orders / coefticients should be set to zero.

And no explicit power corrections (unless by intent)

Goal: a theory calculation that delivers a clean simple-to-understand
prediction, at a stated accuracy.

't may agree or disagree with data. That's ok, consistent with the stated accuracy.

't may disagree a lot with data. Not your problem.
(ATLAS and CMS may end up with a problem.)

Problem: Parton showers always generate subleading structures ...

Hard to control and generally not possible to set cleanly to zero.




Pythia Philosophy

Vice to Virtue: nothing special about zero as guess for higher orders.
Goal: deliver a description that faithfully represents as much data as possible.

Replace purist view by Sanity Limit: avoid undue violence to the underlying
physics model.

1) Allow explicit/controlled coefficients to deviate from exact values
Theoretically consistent if deviation < uncalculated corrections.

PYTHIA example: use eftective values for a (M), consistent with other LO
determinations of it.

Slightly extreme: our one-loop a, “magic trick” for NLO-level agreement at LEP.

Caveat: no guarantee of universality!




Pythia Philosophy

2) Control for non-universalities
Consider several complementary processes and contexts
Possibly weighted by how much you care about each

(and/or by how much the experiments carel)

E.g., for the effective FSR ¢, value in Pythia

We have 3-jet LO MECs and use 3- and 4-jet event shapes + ditto jet rates at LEP as main
constraints (universality across jet multiplicities)

And then we cross check with jet shape profiles at the LHC.

Always a risk that this can fail. E.g., tensions between different processes at LHC
(eg top); experiments retune ¢, and associated worries.

One example that has not been clean to disentangle: b-quark fragmentation in the top decay jet.

+ Hard to be consistent in context of matching and merging = unsolved problem.




(Illustration of the “Magic Trick”)

Hartgring, Laenen, Skands, arXiv:1303.4974

First LEP tune with NLO 3-jet corrections (NNLO Z Decay)
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http://arxiv.org/abs/arXiv:1303.4974

Parameters (in PYTHIA): FSR pQCD Parameters

Matching Additional Matrix Elements included?

| ) At tree level / one-loop level? Using what matching scheme?

as(mz) The value of the strong coupling

| \ In PYTHIA, you set an eftective value for as(mé) < choice of k in aS(kpi)
as Running Renormalization Scheme and Scale for o,

| \ 1- vs 2-loop running, MSbar / CMW scheme, choice of k in aS(kpf), cf

Subleading Logs  Ordering variable, coherence treatment, effective 13
) (or 2—4), recoil strategy, ...

Branching Kinematics (z definitions, local vs global momentum conservation),
hard parton starting scales / phase-space cutoffs, masses, non-singular terms,




Parameters (in PYTHIA): String Tuning

H d o ° 1_Z i <
Trractions . Fragmentation Function i i B
L \ The “Lund a and b parameters” (and Ad;g,,. TOr baryons)

Or use a and (z) instead (less correlated) I el

prin string breaks - Scale of string-breaking process

\& \ Shower cutoft and <P¢> in string breaks

Meson Multiplets Mesons
)

Strangeness suppression, Vector/Pseudoscalar, n, n’, ...

Baryon Multiplets Baryons

)

Baryon-to-meson ratios, Spin-3/2 vs Spin-1/2, “popcorn”,
colour reconnections (junctions), ... ?




Sensitivity to Hadronization Parameters

PYTHIA 8 (hadronization on) Vs (hadronization off)

Important point: These observables are IR safe =» minimal hadronisation corrections

Big differences in how sensitive each of these are to hadronisation & over what range
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The shaded bins provide constraints for the non-perturbative tuning stage.
You want your hadronization power corrections to do the “right thing” at low Thrust.




... and sensitivity to fixed-order corrections

(Adding nuisance terms AP(z) «x Q* to the splitting kernels beyond shower accuracy)
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These points are relatively insensitive to both hadronization and matching/merging




Hadronization Corrections: Fragmentation Tuning

Now use infrared sensitive observables - sensitive to hadronization
+ first few bins of previous (IR safe) ones
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Fragmentation Tuning

Somewhat sensitive to particle composition: heavier hadrons are harder!

Know what physics goes in
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+ effects of feed-down!

(e.g., p = nn, K* - Kn, n - nrrm, ...)

VINCIAROOT

It you get the longitudinal
and transverse FF aspects
right, | would hope the
particle composition woula
not need much work.

But of course good to
check. There is a PDG Rivet
routine but it may have
some issues. | have a
Monash-tune Pythia main
program | could share too.



Final Note on Fragmentation Tuning

Tuning: the higher up the chain you change something, the more it will affect the large-
scale event structure =» Start at the top, and work your way down.

Divide and Conquer: Use Infrared Safety, Exclusivity, and Ratios to exploit factorisations!

3-jet events have a larger <Nch> than 2-jet events

So it you don't get the relative mixture of 2- to 3-jet events right, then you would be in
unsatfe territory trying to fit your lower-scale non-perturbative parameters to an

inclusive measurement of <Nch>.

What can you do? Adjust shower «a,, or use NNLO merging, or use reweighting, or

use <Nch> in an exclusive 2-jet sample that does not depend on the relative 2-to-3-
jet ratio. But don’t do nothing.

Similarly, the total number of particles is different

But relative ratios like <NK>/<NE> should be more universal




Professor

Another elephant in the room: Automated vs Manual tuning

Professor is a powerful tool. | would (by now) recommend using it. Wisely.

Some Dangers

Overfitting: extremely precisely measured data points can generate large y* values even if the
generator gets within what one would naively consider a “reasonable” agreement.
it reacts by sacrificing agreement elsewhere (typically in tails) to improve y~ in peaks.

Professor now has facility to include a “sanity limit” (e.g., 5%) “theory uncertainty”
» Fit no longer gets rewarded (much) for improving agreement beyond that point. More freedom in tails.

This also tends to produce )(52% values in the neighbourhood of unity — meaningtul uncertainty bands?

Incompatibilities: a model may be unable to agree at all with (some part of) a given measurement.

Example: trying to force a "wimpy shower” to agree with ptz in bins above mz.

Fit reacts by desperately trying to reduce order-of-magnitude differences in bins it shouldn’t have been
asked to fit in the first place, at cost of everything else » total garbage.

Choose carefully. + Professor now has facility to not penalise y* beyond some maximum deviation.




Parameter Hierarchies: Identitying Them and Breaking Them Down

Wouldn't it be nice if there was a tool:
That could automatically detect correlations between parameters and observables.

And tell you which “groups” they fall into naturally : which parameter sets you
should ideally tune together, and which are more nicely tactorised.

This is (at least partly) what the tool AutoTunes does EEEIEERIEIIER
| won't have time to discuss that today, but | think it looks promising

| encourage you to study it and use it:

YOU may aISO be interested in Apprentice Krishnamoorthy et al., EPJ Web Conf. 251 (2021) 03060

Variance reduction to semi-automate how to weight observables & bins




Parameters (in PYTHIA): Initial-State Radiaton

Matching & Merging  Additional Matrix Elements included?

) At tree level / one-loop level? What matching scheme?

Size of Phase Space Starting sca|e

+ PDF

Choice

A Relation between Qps and Qf (Vetoed showers? Suppressed? ct matching)
Coherence Initial-Final interference
| ) -F colour-flow interference effects (eg VBF & Tevatron ff asym) & interleaving
& Value and running of the strong coupling
| ) Governs overall amount of radiation (cf FSR)

“primordial kT” A small additional amount of “unresolved” kT

\ Fermi motion + unresolved ISR emissions

low-x effects?




ISR + Primordial kT

Drell-Yan pT distribution M%§%
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Controlling tfor Process Dependencel

Note: these distributions rely on Pythia’s “Power Showers”
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=>» we should ensure we do MECs /
matching / merging it we want to use
them (or something equivalent to that.)

These points are quite
sensitive to MECs /
Matching / Merging.




A Briet History of MPl in PYTHIA

o - (P1) pi
parton-parton’”. > ] Sjostrand & PS, 2005:
®hadron-hadron Plmax p==========" Interleave MP| & ISR evolutions In
— several parton-parton interactions per piy Lo _@rdint._ _ Onecommon sequence of pr
hadron-hadron interaction: MPI Corke & Sjostrand, 2011:
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Minimum-Bias & Underlying Event

Number of MPL Infrared Regularization scale p |, for the QCD 2—2 (Rutherford)
) scatterings used for multiple parton interactions

— average number of MPI, sets size of overall UE activity

Note: strongly correlated with choice of PDF set! (low-x gluon)

Pedestal Rise ~ Proton transverse mass distribution — difference between central
) (more active) vs peripheral (less active) collisions

\
\_,//

o Color correlations between multiple-parton-interaction systems (aka
rings per

Interaction colour reconnections — relative to LC)
\ — shorter or longer strings = less or more hadrons per MPI
' /.
- Affect <pt> vs Ny balance: High CR =» fewer particles, each carrying more pr

Vs *c@ing  Evolution of UE, (dN/dn), ... with collider CM energy

\ ) Cast as energy evolution of prg parameter.




Underlying Event

Same thing as before: how many particles do you get? And how much pr do they carry?

AO
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UE - LHC from 900 to 7000 GeV - ATLAS
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As you trigger on progressively higher pT, the entire event increases ...

... until you reach a plateau ("max-bias”) also called the “jet pedestal” effect
Interpreted as impact-parameter effect

Qualitatively reproduced by MPI models

Relative size of this plateau / min-bias depends on pTO, PDF, and b-profile




Interplay between MP| and PDF set

Some PDFs that were available
at the time of the Monash tune
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Tuning: What do you want it to be?

Sensible

:
JAY\V/ e Y4} B3 70 A set of physically sensible central parameter values, with good universality.

o Tl Tl ol TT]30lTT

FM 88 90 82 94 ¢

What does “physically sensible” and “good universality” really mean?

Sophisticated

High-precision & specialised parameter sets, with reliable uncertainties

Tuning in the context of NnLO matching & precision/theory applications.
Theory uncertainties. Rigorous scientific analyses of parameter spaces.

Best Fit?

A pure optimisation problem. The best fit you can get. Ask questions later.

Risky. Overtitting, oversimplitication, GIGO, black-box syndrome, tunnel
vision, how to define “best”, loss of insight & scientific rigour,...



Notes on PDFs
tor MPl Models



The issue with NLO gluons at low x

(Summary of note originally written by T. Sjostrand, from discussions with R. Thorne though any oversimplifications or misrepresentations are our own)

Low-x gluon Mathematically (toy NLO Calculation with just one x):

MEnNLo
=1+ as(A; In(1 A
Key constraint: DIS F, ME o +Dn( /z) + Ao)
Low x: dF,/dIn(Q?) driven by g — gg F :
’ In(1/x) largely compensated in def of NLO PDF:
LO Pg/4(2) ~ tlat = x of measured quark PDFxLo
closely correlated with x of mother PDF; o, L+ as(Bi In(1/z) + Bo)
gluon.
NLO Integral over Py/4(z) « 1/z for small » Product We||—bezha.ved at NLO if we choose B, ~ A,
z = approximate In(1/x) factor. Cross term at O(«;) is beyond NLO accuracy ... " e

» Effectively, the NLO gluon is probed 2 " :
more “non-locally” in . For large x and small a(Q~), e.g. a A, In(1/x) ~ 0.2:
MENLO P]:)FNLO

dIn F,/dQ? at small x becomes too big ME; o PDF} 0
unless positive contribution from

medium-to-high-x gluons (derived from : 0 |
dIn F,/dQ? in that region, and from other But if x ano Q are SmaH' Sdy aSAl ln(l/x) 2:

measurements) is combined with a MEnx;.o PDF ' :
) NLO NLO _ (142)(1-2) = -3 % Cross term dominates:

ﬂlegative contribution from low-x MEo PDF; The PDF becomes negative
gluons.

= (14+0.2)(1-0.2) =0.96 o log terms cancel

Not so important for high-pt processes because 1) DGLAP evolution fills up low-x region, 2) kinematics restricted to higher x, 3) smaller a,




Some Desirable Properties for PDFs for Event Generators

General-Purpose MC Generators are used to address very diverse physics phenomena
and connect (very) high and (very) low scales » Big dynamical range!

1. Stable (& positive) evolution to rather low O scales, e.g. 0, S 1 GeV
ISR shower evolution and MPI go all the way down to the MC IR cutoffs ~ 1 GeV

2. Extrapolates sensibly to very low x ~ 107° (at LHC), especially at low Q ~ Q,.

"Sensible” ~ positive and smooth, without (spurious) structure

Constraint for perturbative MPI: § > (1 GeV)* = Xipc 2 107°  (xpee > 1071
Main point: MPI can probe a large range of x, beyond the usual ~ 10~

(Extreme limits are mainly relevant for ultra-forward / beam-remnant fragmentation)

3. Photons included as partons

Bread and butter for part of the user community

4. LO or equivalent in some form (possibly with a¢, relaxed momentum sum rule, ...)

Since MPI Matrix Elements are LO; ISR shower kernels also LO (so far)

5. Happy to have N"LO ones in a similar family.

E.g., for use with higher-order MEs for the hard process.

Usetful (but possible?) for these to satisty the other properties too?




