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P. Skands - New Developments in Parton Showers

“New” ?

For matching to the first emission:
= PYTHIA scheme 

For matching to the first loop:
= POWHEG scheme

What is new (apart from antennae):
Repeating this for the next emission, and the next, … 

GKS ~ multileg scheme (unitary) that reduces to PYTHIA/POWHEG at 1st order

Unitarity → No “matching scale” needed

Faster than MLM, CKKW (no initialization, no separate n-parton phase-spaces)

Calculation also yields ~10 automatic uncertainty estimates at a moderate speed penalty 

2

Sjöstrand & Bengtsson, PLB 185 (1987) 435, NPB 289 (1987) 810

Nason, JHEP 0411 (2004) 040;   Nason, Ridolfi, JHEP 0608 (2006) 077;   … 

Giele, Kosower, PS, PRD 84 (2011) 054003

(real-emission part same as PYTHIA, hence compatible)

(reformulated for antennae)

Lund, Mueller, Catani-Seymour, St Petersburg, Kosower, Gehrmann-Glover, … 
     “Global” : Gustafson & Pettersson, NPB 306 (1988) 746 + Gehrmann et al. (2005)
     “Sector” : Kosower. PRD 57 (1998) 5410



P. Skands - New Developments in Parton Showers

1st Order: PYTHIA and POWHEG

3

PYTHIA

amplitudes. The collinear singularity Q2 → 0 here corresponds to emission along direction
2 rather than direction 1. In that case the rôles of t̂ and û are interchanged, and the cross
section dσ̂/dt̂|PS2 is easily obtained. The total shower rate is given by the sum,

dσ̂

dt̂

∣

∣

∣

∣

∣

PS

=
dσ̂

dt̂

∣

∣

∣

∣

∣

PS1

+
dσ̂

dt̂

∣

∣

∣

∣

∣

PS2

=
σ0

ŝ
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Thus the singularity structure of the parton-shower and matrix-element rates agree, giving
a ratio
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The same exercise may be carried out for qg → q′W:
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ŝ2 + û2 + 2m2
W t̂

−ŝû
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−ŝû
, (11)

Rqg→q′W(ŝ, t̂) =
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ŝ2 + û2 + 2m2

Wt̂
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1 ≤ Rqg→q′W(ŝ, t̂) ≤
√
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2(
√
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< 3. (13)

Note that, unlike the qq′ → gW process, there is no addition of two shower histories when
comparing with matrix elements, since here also the latter contains two separate terms
corresponding to qg and gq initial states, respectively.

The qq′ → gW process receives contributions from two Feynman graphs, t-channel
and u-channel, and the shower thus exactly matches this set, although obviously it does
not include interference between the two. The qg → q′W process is different, since only
its u-channel graph is covered by the parton-shower formalism, while the s-channel one
has no correspondence. Since this latter graph is free from collinear singularities, the
shower is not misbehaving in any regions of phase space because of this omission, but it
is interesting to speculate that the larger value for Rqg→q′W(ŝ, t̂) than for Rqq′→gW(ŝ, t̂)
partly may have its origin here (remember that a larger R(ŝ, t̂) means a smaller shower
emission rate).

Based on the above exercise, the standard parton-shower approach may be improved
in two steps. The first is to note that, since the shower so closely agrees with the correct
matrix-element expression — much better than one might have had reason to expect —
it is safe to apply the shower to all of phase space, i.e. to have Q2

max ≈ s rather than
the more traditional shower-generator limit Q2

max ≈ m2
W [12, 8]. The older choice was

inspired in part by the fear of a completely erroneous behaviour for Q2 & m2
W, in part by
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section dσ̂/dt̂|PS2 is easily obtained. The total shower rate is given by the sum,

dσ̂

dt̂

∣

∣

∣

∣

∣

PS

=
dσ̂

dt̂

∣

∣

∣

∣

∣

PS1

+
dσ̂

dt̂

∣

∣

∣

∣

∣

PS2

=
σ0

ŝ
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. (7)

Thus the singularity structure of the parton-shower and matrix-element rates agree, giving
a ratio

Rqq′→gW(ŝ, t̂) =
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= 1 +
û(û − 2m2

W)
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√

5 − 1

2(
√

5 − 2)
< 3. (13)

Note that, unlike the qq′ → gW process, there is no addition of two shower histories when
comparing with matrix elements, since here also the latter contains two separate terms
corresponding to qg and gq initial states, respectively.

The qq′ → gW process receives contributions from two Feynman graphs, t-channel
and u-channel, and the shower thus exactly matches this set, although obviously it does
not include interference between the two. The qg → q′W process is different, since only
its u-channel graph is covered by the parton-shower formalism, while the s-channel one
has no correspondence. Since this latter graph is free from collinear singularities, the
shower is not misbehaving in any regions of phase space because of this omission, but it
is interesting to speculate that the larger value for Rqg→q′W(ŝ, t̂) than for Rqq′→gW(ŝ, t̂)
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Use PS as overestimate. Correct to R/B via veto:

FSR: Sjöstrand & Bengtsson, PLB185(1987)435, NPB289(1987)810
Drell-Yan: Miu & Sjöstrand, PLB449(1999)313

solution, matching, is to introduce a transition from one method to the other at some
intermediate scale [6, 7, 8]. Such an approach is convenient for descriptions of exclusive
jet topologies, but tend to suffer from discontinuities between event classes and around
the transition scale. More ambitious is the merging strategy, where matrix-element in-
formation is integrated into the shower in such a way as to obtain a uniform and smooth
description. This approach so far has only been implemented for the merging to O(αs)
of e+e− → qq with e+e− → qqg [9, 7]. We will here introduce a corresponding O(αs)
merging in hadronic W production. Further details may be found in [10].

Since we neglect the decay of the W, alternatively imagine it decaying leptonically, all
QCD radiation occurs in the initial state. We will base our approach on the initial-state
shower algorithm of [11], as implemented in Pythia [12]. The principle of backwards
evolution implies that a shower may be reconstructed by starting at the large Q2 scale of
the hard process and then gradually considering emissions at lower and lower virtualities,
i.e. earlier and earlier in the cascade chain (and in time).

The starting point is the standard DGLAP evolution equation [13],

dfb(x, t)

dt
=

∑

a

∫ 1

x

dx′

x′

αs(t)

2π
fa(x

′, t) Pa→bc(z) , (1)

with fi the distribution function of parton species i, x the momentum fraction carried by
the parton, t = ln(Q2/Λ2

QCD) the resolution scale, and Pa→bc(z) the AP splitting kernels
for parton b obtaining a fraction z = x/x′ of the a momentum. Normally the evolution
is in terms of increasing t, but in the backwards evolution t is instead decreasing. Then
the DGLAP equation expresses the rate at which partons b of momentum fraction x are
‘unresolved’ into partons a of fraction x′, in a step dt backwards. The corresponding
relative probability is dPb/dt = (1/fb) (dfb/dt). The probability that b remains resolved
from some initial scale tmax down to t < tmax is thereby obtained by a Sudakov form factor

Sb(x, t; tmax) = exp

(

−
∫ tmax

t

1

fb(x, t′)
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dt′
dt′

)

= exp

(

−
∫ tmax

t
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x
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xfb(x, t′)
Pa→bc(z)

)

. (2)

From this expression it is a matter of standard Monte Carlo techniques to gener-
ate the complete branching a → bc [11]; e.g., the t distribution of the branching is
−dSb(x, t; tmax)/dt. Given parton a, one may in turn reconstruct which parton branched
into it, and so on, down to the starting scale Q0. In each branching, the t scale gives the
tmax value of the branching to be considered next, i.e. the Q2 values are assumed strictly
ordered.

The definition of the Q2 and z variables is not unambiguous. Referring to the notation
of Fig. 1, and to the branching 3 → 1 + 4, the Q2 scale in our algorithm [11] is associated
with the spacelike virtuality of the produced parton 1, Q2 = −p2

1, while z is given by the
reduction of squared invariant mass of the contained subsystem, z = (p1 +p2)2/(p3 +p2)2.
In the limit of collinear kinematics, Q2 = 0, one recovers the momentum fraction z =
p1/p3. The z definition couples the two sides of the events, so that the order in which the
branchings 3 → 1 + 4 and 5 → 2 + 6 are considered makes some difference for the final

2

Inclusive Cross Section (at fixed underlying Born variables):

→  B  = σ0  = |MBorn|2

Unitarity + no normalization correction → remains σ0

Cancels when normalizing to 1/σ and integrating over Born

(+analogous for qq→gW)

(for qg→q’W)

Note: → tuning of standalone PYTHIA done with this matching scheme
Should be OK for POWHEG, but could give worries for MLM

B. Cooper et al, arXiv:1109.5295
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1st Order: PYTHIA and POWHEG
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a ratio
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Wŝ
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< Rqq′→gW(ŝ, t̂) ≤ 1 . (9)

The same exercise may be carried out for qg → q′W:
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1 ≤ Rqg→q′W(ŝ, t̂) ≤
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2(
√

5 − 2)
< 3. (13)

Note that, unlike the qq′ → gW process, there is no addition of two shower histories when
comparing with matrix elements, since here also the latter contains two separate terms
corresponding to qg and gq initial states, respectively.

The qq′ → gW process receives contributions from two Feynman graphs, t-channel
and u-channel, and the shower thus exactly matches this set, although obviously it does
not include interference between the two. The qg → q′W process is different, since only
its u-channel graph is covered by the parton-shower formalism, while the s-channel one
has no correspondence. Since this latter graph is free from collinear singularities, the
shower is not misbehaving in any regions of phase space because of this omission, but it
is interesting to speculate that the larger value for Rqg→q′W(ŝ, t̂) than for Rqq′→gW(ŝ, t̂)
partly may have its origin here (remember that a larger R(ŝ, t̂) means a smaller shower
emission rate).

Based on the above exercise, the standard parton-shower approach may be improved
in two steps. The first is to note that, since the shower so closely agrees with the correct
matrix-element expression — much better than one might have had reason to expect —
it is safe to apply the shower to all of phase space, i.e. to have Q2

max ≈ s rather than
the more traditional shower-generator limit Q2

max ≈ m2
W [12, 8]. The older choice was

inspired in part by the fear of a completely erroneous behaviour for Q2 & m2
W, in part by
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solution, matching, is to introduce a transition from one method to the other at some
intermediate scale [6, 7, 8]. Such an approach is convenient for descriptions of exclusive
jet topologies, but tend to suffer from discontinuities between event classes and around
the transition scale. More ambitious is the merging strategy, where matrix-element in-
formation is integrated into the shower in such a way as to obtain a uniform and smooth
description. This approach so far has only been implemented for the merging to O(αs)
of e+e− → qq with e+e− → qqg [9, 7]. We will here introduce a corresponding O(αs)
merging in hadronic W production. Further details may be found in [10].

Since we neglect the decay of the W, alternatively imagine it decaying leptonically, all
QCD radiation occurs in the initial state. We will base our approach on the initial-state
shower algorithm of [11], as implemented in Pythia [12]. The principle of backwards
evolution implies that a shower may be reconstructed by starting at the large Q2 scale of
the hard process and then gradually considering emissions at lower and lower virtualities,
i.e. earlier and earlier in the cascade chain (and in time).

The starting point is the standard DGLAP evolution equation [13],

dfb(x, t)

dt
=

∑

a

∫ 1

x

dx′

x′

αs(t)

2π
fa(x

′, t) Pa→bc(z) , (1)

with fi the distribution function of parton species i, x the momentum fraction carried by
the parton, t = ln(Q2/Λ2

QCD) the resolution scale, and Pa→bc(z) the AP splitting kernels
for parton b obtaining a fraction z = x/x′ of the a momentum. Normally the evolution
is in terms of increasing t, but in the backwards evolution t is instead decreasing. Then
the DGLAP equation expresses the rate at which partons b of momentum fraction x are
‘unresolved’ into partons a of fraction x′, in a step dt backwards. The corresponding
relative probability is dPb/dt = (1/fb) (dfb/dt). The probability that b remains resolved
from some initial scale tmax down to t < tmax is thereby obtained by a Sudakov form factor

Sb(x, t; tmax) = exp

(

−
∫ tmax

t

1

fb(x, t′)

dfb(x, t′)

dt′
dt′

)

= exp

(

−
∫ tmax

t
dt′

∑

a

∫ 1

x

dx′

x′

αs(t′)

2π

fa(x′, t′)

fb(x, t′)
Pa→bc(z)

)

= exp

(

−
∫ tmax

t
dt′

αs(t′)

2π

∑

a

∫ 1

x
dz

x′fa(x′, t′)

xfb(x, t′)
Pa→bc(z)

)

. (2)

From this expression it is a matter of standard Monte Carlo techniques to gener-
ate the complete branching a → bc [11]; e.g., the t distribution of the branching is
−dSb(x, t; tmax)/dt. Given parton a, one may in turn reconstruct which parton branched
into it, and so on, down to the starting scale Q0. In each branching, the t scale gives the
tmax value of the branching to be considered next, i.e. the Q2 values are assumed strictly
ordered.

The definition of the Q2 and z variables is not unambiguous. Referring to the notation
of Fig. 1, and to the branching 3 → 1 + 4, the Q2 scale in our algorithm [11] is associated
with the spacelike virtuality of the produced parton 1, Q2 = −p2

1, while z is given by the
reduction of squared invariant mass of the contained subsystem, z = (p1 +p2)2/(p3 +p2)2.
In the limit of collinear kinematics, Q2 = 0, one recovers the momentum fraction z =
p1/p3. The z definition couples the two sides of the events, so that the order in which the
branchings 3 → 1 + 4 and 5 → 2 + 6 are considered makes some difference for the final
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phase space, and dΦr is Πdri times a suitable Jacobian. We now write the NLO

exact formula in the following way

dσ = B(v)dΦv + V (v)dΦv + [R(v, r)dΦvdΦr − C(v, r)dΦvdΦrP] =

[V (v) + (R(v, r) − C(v, r))dΦrP] dΦv + B(v)dΦv

[

1 +
R(v, r)

B(v)
(1 − P) dΦr

]

(5.6)

Comparing eqs. (5.2) and (5.3), we immediately see that the analogue of eq. (5.2)
arising from eq. (5.6) is given by

dσ = [V (v) + (R(v, r) − C(v, r)) dΦrP] dΦv

+ B(v)dΦv

[

∆(NLO)
R (0) + ∆(NLO)

R (pT)
R(v, r)

B(v)
dΦr

]

(5.7)

where we have defined

∆(NLO)
R (pT) = e−

∫

dΦr
R(v,r)
B(v) θ(kT(v,r)−pT) (5.8)

One can implement eq. (5.7) in an SMC+NLO implementation by generating Born
events with distribution B(v1 . . . vl), generating the first emission according to the

second line of eq. (5.7), and then generating the subsequent emissions as pT vetoed
shower. Furthermore, one should associate a truncated vetoed shower from the

combined emitted parton and the closest (in pT) primary parton. The first term
in eq. (5.7) can be generated independently, and attached to an ordinary shower,
since it is formally of higher order in αS. With this method, negative weighted

events could be generated, since this term is not guaranteed to be positive. A better
procedure would be the following. One defines

B̄(v) = B(v) + V (v)

+

∫

(R(v, r) − C(v, r))dΦr (5.9)

and then implements the hardest emission as

dσ = B̄(v)dΦv

[

∆(NLO)
R (0) + ∆(NLO)

R (pT)
R(v, r)

B(v)
dΦr

]

. (5.10)

Eq. (5.10) overcomes the problem of the negative weights, in the sense that the region

where B̄ is negative must signal the failure of perturbation theory, since the NLO
negative terms have overcome the Born term.

The structure of the counterterm and the projection in NLO calculations is in
general more involved than in the example illustrated above. However, one can
separate the real contribution into several term, each one of them singular in a

particular collinear region7. To each term one can associate a counterterm with a
7For example, defining Rk = 1

∑

i
1

Si

1
Sk

, where Sk is the mass of the pair formed by the kth parton

with the radiated parton, we have
∑

Ri = R, and each Rk is singular only in the region where the
emitted parton is collinear to the kth parton, or soft.
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Figure 1: Schematic picture of an initial-state parton shower, extending from both sides
of the event in to the W.

configuration. The rule adopted is therefore to reconstruct branching kinematics strictly
in order of decreasing Q2, i.e. interleaving emissions on the two sides of the event.

Now let us compare the step from qq′ → W to qq′ → gW between the matrix-
element and parton-shower languages. Since only one branching is to be considered, the
comparison has to be with a truncated shower, e.g. where only the branching 3 → 1 + 4
occurs in Fig. 1. The 2 → 2 process thus is q(3) + q′(2) → g(4) + W(0), for which

ŝ = (p3 + p2)
2 =

(p1 + p2)2

z
=

m2
W

z
,

t̂ = (p3 − p4)
2 = p2

1 = −Q2 , (3)

û = m2
W − ŝ − t̂ = Q2 −

1 − z

z
m2

W .

The matrix element for qq′ → gW can be written as [14]

dσ̂

dt̂

∣

∣

∣

∣

∣

ME

=
σ0

ŝ

αs

2π

4

3

t̂2 + û2 + 2m2
Wŝ

t̂û
. (4)

Here σ0 is the cross section for qq′ → W, σ0 = (π2αem/3 sin2θW m2
W)|Vqq′ |2δ(1−m2

W/x1x2s)
in the narrow-width limit, with δ(1−m2

W/x1x2s) #→
∫

dz δ(1−m2
W/zx3x2s) in the 2 → 2

process kinematics. (The details of the σ0 factor are not relevant for the point we want
to make, so the presentation is intentionally sketchy.) Now rewrite eq. (4) in terms of z
and Q2, using eq. (3):

dσ̂

dQ2

∣

∣

∣

∣

∣

ME

=
σ0z

m2
W

αs

2π

4

3

(1 + z2)m4
W − 2z(1 − z)Q2m2

W + 2z2Q4

zQ2((1 − z)m2
W − zQ2)

Q2→0−→ σ0

αs

2π

4

3

1 + z2

1 − z

1

Q2
=

dσ̂

dQ2

∣

∣

∣

∣

∣

PS1

. (5)

We here easily recognize the splitting kernel for q → qg, i.e. the matrix element reduces
to the the normal shower expression in the collinear limit, as it should be. Some extra
but trivial work is necessary to include the convolution with parton distributions, which
involves f1(x1, Q2) in lowest order and f3(x3, Q2) for the O(αs) processes.

In order to study how the shower populates the phase space, it is straightforward to
translate back the above expression,

dσ̂

dt̂

∣

∣

∣

∣

∣

PS1

=
σ0

ŝ

αs

2π

4

3

ŝ2 + m4
W

t̂(t̂ + û)
. (6)

To this we should add the other possible shower history, where the gluon is emitted
by a branching 5 → 2 + 6 instead; after all, the matrix-element expression contains both

3

=
(for qg→q’W)

for gluon radiation from a qq̄ initial-state, and

Cgq̄,q =

[

−
1

u
2 g2

s TF {1 − 2x (1 − x)}Bqq̄(M̄, Ȳ , θ̄l)

]

⊕

, (2.29)

for the gq̄. Analogous formulae apply for the qq̄ and the qg counterterms in the ! collinear

direction.

The collinear remnants are given by

Gqq̄,g
⊕ (Φ2,⊕) =

αS

2π
CF

[(

2

1 − z
log

(1 − z)2

z

)

+

− (1 + z) log
(1 − z)2

z
+ (1 − z)

+

(

2

3
π2 − 5

)

δ(1 − z) +

(

1 + z2

1 − z

)

+

log
M2

µ2
F

]

[

Bqq̄(M̄, Ȳ , θ̄l)
]

⊕
, (2.30)

Ggq̄,q
⊕ (Φ2,⊕) =

αS

2π
TF

{

[

z2 + (1 − z)2
]

[

log
(1 − z)2

z
+ log

M2

µ2
F

]

+ 2z(1 − z)

}

[

Bqq̄(M̄, Ȳ , θ̄l)
]

⊕
.

(2.31)

The Φ2,⊕ notation, according to ref. [5], represents the set of variables

Φ2,⊕ = {x⊕, x", z, k1, k2}, z x⊕K⊕ + x"K" = k1 + k2 . (2.32)

We also associate an underlying Born configuration Φ̄2 to the Φ2,⊕ kinematics, defined by

k̄⊕ = z x⊕K⊕, k̄" = x"K", k̄1 = k1, k̄2 = k2 . (2.33)

The other two collinear remnants, Gqq̄,g
" (Φ2,") and Gqg,q̄

" (Φ2,"), are equal to Gqq̄,g
⊕ (Φ2,⊕)

and Ggq̄,q
⊕ (Φ2,⊕) respectively, with

[

Bqq̄(M̄ , Ȳ , θ̄l)
]

⊕
replaced by

[

Bqq̄(M̄, Ȳ , θ̄l)
]

"
. We then

introduce the notation B, V , R, C, G, to stand for B, V, R, C, G, each multiplied by its

appropriate parton densities. The differential cross section, multiplied by some infrared

safe observable O, can then be written as

〈O〉 =
∑

qq̄

{

∫

dΦ2 [Bqq̄(Φ2) + Vqq̄(Φ2)] O(Φ2)

+

∫

dΦ3

{

Rqq̄,g(Φ3)O(Φ3) − C⊕
qq̄,g(Φ3)

[

O(Φ̄2)
]

⊕
− C"

qq̄,g(Φ3)
[

O(Φ̄2)
]

"

}

+

∫

dΦ3

{

Rgq̄,q(Φ3)O(Φ3) − Cgq̄,q(Φ3)
[

O(Φ̄2)
]

⊕

}

+

∫

dΦ3

{

Rqg,q̄(Φ3)O(Φ3) − Cqg,q̄(Φ3)
[

O(Φ̄2)
]

"

}

+

∫

dΦ2,⊕
[

Gqq̄,g
⊕ (Φ2,⊕) + Ggq̄,q

⊕ (Φ2,⊕)
]

O(Φ2,⊕)

+

∫

dΦ2,"
[

Gqq̄,g
" (Φ2,") + Gqg,q̄

" (Φ2,")
]

O(Φ2,")

}

. (2.34)
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for the gq̄. Analogous formulae apply for the qq̄ and the qg counterterms in the ! collinear

direction.

The collinear remnants are given by

Gqq̄,g
⊕ (Φ2,⊕) =

αS

2π
CF

[(

2

1 − z
log

(1 − z)2

z

)

+

− (1 + z) log
(1 − z)2

z
+ (1 − z)

+

(

2

3
π2 − 5

)

δ(1 − z) +

(

1 + z2

1 − z

)

+

log
M2

µ2
F

]

[

Bqq̄(M̄, Ȳ , θ̄l)
]

⊕
, (2.30)

Ggq̄,q
⊕ (Φ2,⊕) =

αS

2π
TF

{

[

z2 + (1 − z)2
]

[

log
(1 − z)2

z
+ log

M2

µ2
F

]

+ 2z(1 − z)

}

[

Bqq̄(M̄, Ȳ , θ̄l)
]

⊕
.

(2.31)

The Φ2,⊕ notation, according to ref. [5], represents the set of variables

Φ2,⊕ = {x⊕, x", z, k1, k2}, z x⊕K⊕ + x"K" = k1 + k2 . (2.32)

We also associate an underlying Born configuration Φ̄2 to the Φ2,⊕ kinematics, defined by

k̄⊕ = z x⊕K⊕, k̄" = x"K", k̄1 = k1, k̄2 = k2 . (2.33)

The other two collinear remnants, Gqq̄,g
" (Φ2,") and Gqg,q̄

" (Φ2,"), are equal to Gqq̄,g
⊕ (Φ2,⊕)

and Ggq̄,q
⊕ (Φ2,⊕) respectively, with

[

Bqq̄(M̄ , Ȳ , θ̄l)
]

⊕
replaced by

[

Bqq̄(M̄, Ȳ , θ̄l)
]

"
. We then

introduce the notation B, V , R, C, G, to stand for B, V, R, C, G, each multiplied by its

appropriate parton densities. The differential cross section, multiplied by some infrared

safe observable O, can then be written as

〈O〉 =
∑

qq̄

{

∫

dΦ2 [Bqq̄(Φ2) + Vqq̄(Φ2)] O(Φ2)

+

∫

dΦ3

{

Rqq̄,g(Φ3)O(Φ3) − C⊕
qq̄,g(Φ3)

[

O(Φ̄2)
]

⊕
− C"

qq̄,g(Φ3)
[

O(Φ̄2)
]

"

}

+

∫

dΦ3

{

Rgq̄,q(Φ3)O(Φ3) − Cgq̄,q(Φ3)
[

O(Φ̄2)
]

⊕

}

+

∫

dΦ3

{

Rqg,q̄(Φ3)O(Φ3) − Cqg,q̄(Φ3)
[

O(Φ̄2)
]

"

}

+

∫

dΦ2,⊕
[

Gqq̄,g
⊕ (Φ2,⊕) + Ggq̄,q

⊕ (Φ2,⊕)
]

O(Φ2,⊕)

+

∫

dΦ2,"
[

Gqq̄,g
" (Φ2,") + Gqg,q̄

" (Φ2,")
]

O(Φ2,")

}

. (2.34)

– 6 –

+

(+analogous for qq→gW)

Nason, JHEP 11(2004)040
Drell-Yan:  Alioli et al., JHEP 07(2008)060

(using Sjöstrand’s notation)

= LL’
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Differences?

4

Shower matching to MEs: POWHEG
Standard Les Houches interface (LHA, LHEF) specifies startup scale SCALUP

for showers, so “trivial” to interface any external program, including POWHEG.
Problem: for ISR

p2
⊥ = p2

⊥evol −
p4
⊥evol

p2
⊥evol,max

i.e. p⊥ decreases for θ∗ > 90◦ but p⊥evol monotonously increasing.
Solution: run “power” shower but kill emissions above the hardest one,
by POWHEG’s definition.
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(1
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)  
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 / 
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x = p! shower              / p! hard

(b)

Factorisation Scale
Kinematical Limit + Veto

Available for ISR-dominated, coming for QCD jets with FSR issues.

Slide from T. Sjöstrand, TH-LPCC workshop, August 2011, CERN

Note: Other things that may differ in comparisons: PDFs (NLO vs LO), Scale Choices
in PYTHIA 8

not needed if shower ordered in pT?

phase space, and dΦr is Πdri times a suitable Jacobian. We now write the NLO

exact formula in the following way

dσ = B(v)dΦv + V (v)dΦv + [R(v, r)dΦvdΦr − C(v, r)dΦvdΦrP] =

[V (v) + (R(v, r) − C(v, r))dΦrP] dΦv + B(v)dΦv

[

1 +
R(v, r)

B(v)
(1 − P) dΦr

]

(5.6)

Comparing eqs. (5.2) and (5.3), we immediately see that the analogue of eq. (5.2)
arising from eq. (5.6) is given by

dσ = [V (v) + (R(v, r) − C(v, r)) dΦrP] dΦv

+ B(v)dΦv

[

∆(NLO)
R (0) + ∆(NLO)

R (pT)
R(v, r)

B(v)
dΦr

]

(5.7)

where we have defined

∆(NLO)
R (pT) = e−

∫

dΦr
R(v,r)
B(v) θ(kT(v,r)−pT) (5.8)

One can implement eq. (5.7) in an SMC+NLO implementation by generating Born
events with distribution B(v1 . . . vl), generating the first emission according to the

second line of eq. (5.7), and then generating the subsequent emissions as pT vetoed
shower. Furthermore, one should associate a truncated vetoed shower from the

combined emitted parton and the closest (in pT) primary parton. The first term
in eq. (5.7) can be generated independently, and attached to an ordinary shower,
since it is formally of higher order in αS. With this method, negative weighted

events could be generated, since this term is not guaranteed to be positive. A better
procedure would be the following. One defines

B̄(v) = B(v) + V (v)

+

∫

(R(v, r) − C(v, r))dΦr (5.9)

and then implements the hardest emission as

dσ = B̄(v)dΦv

[

∆(NLO)
R (0) + ∆(NLO)

R (pT)
R(v, r)

B(v)
dΦr

]

. (5.10)

Eq. (5.10) overcomes the problem of the negative weights, in the sense that the region

where B̄ is negative must signal the failure of perturbation theory, since the NLO
negative terms have overcome the Born term.

The structure of the counterterm and the projection in NLO calculations is in
general more involved than in the example illustrated above. However, one can
separate the real contribution into several term, each one of them singular in a

particular collinear region7. To each term one can associate a counterterm with a
7For example, defining Rk = 1

∑

i
1

Si

1
Sk

, where Sk is the mass of the pair formed by the kth parton

with the radiated parton, we have
∑

Ri = R, and each Rk is singular only in the region where the
emitted parton is collinear to the kth parton, or soft.
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VINCIA

What is it?
Plug-in to PYTHIA 8 http://projects.hepforge.org/vincia

What does it do?
“Matched Markov antenna showers”

Improved parton showers

+ Re-interprets tree-level matrix elements as 2→n antenna functions
+ Extends matching to soft region (no “matching scale”)

Automated uncertainty estimates

Systematic variations of shower functions, evolution variables, μR , etc. 

→ A vector of output weights for each event (central value = unity = unweighted)

Who is doing it?
GEEKS: Giele, Kosower, PS 
+ Collaborations with Sjostrand (Pythia 8 interface), Gehrmann-de-Ridder & Ritzmann (mass effects), 
Lopez-Villarejo & Larkoski (sector showers, helicity-dependence), Hartgring & Laenen (NLL/NLO multileg), 
Diana (ISR), Volunteers (Tuning) 

5

The VINCIA Code 

http://projects.hepforge.org/vincia/
http://projects.hepforge.org/vincia/
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MC@NLO & POWHEG MLM & CKKW

LO for 1st emission
LL for 2nd emission and beyond

“Matching Scale”
→ hierarchies not matched

Work in Progress

~ PYTHIA 
+ POWHEG This Talk

GKS, PRD84(2011)054003 

GKS, PRD78(2008)014026
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The Denominator    v

7

In a traditional parton shower, you would face 
the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last 
→ proliferation of terms 

Number of histories contributing to nth branching ∝ 2nn!

~ + + + j = 2
→ 4 terms

j = 1
→ 2 terms~( + )

|MF |2

|MF+1|2
LL∼
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i∈ant
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ai →
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ai|MF |2

1

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)
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→ proliferation of terms 

Number of histories contributing to nth branching ∝ 2nn!

~ + + + j = 2
→ 4 terms
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P. Skands - New Developments in Parton Showers

Matched Markovian Antenna Showers

+ Change “shower restart” to Markov criterion:

Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n
Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced

8

(+ generic Lorentz-
invariant and on-shell 
phase-space factorization)

Antenna showers: one term per parton pair 2nn! → n!



P. Skands - New Developments in Parton Showers

Matched Markovian Antenna Showers

+ Change “shower restart” to Markov criterion:

Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n
Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced

8

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

+ J. Lopez-Villarejo → 1 term at any order

(+ generic Lorentz-
invariant and on-shell 
phase-space factorization)

Antenna showers: one term per parton pair 2nn! → n!
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Approximations
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including −∞, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p⊥-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ψPS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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S T RO N G  O R D E R I N G

Distribution of Log10(PSLO/MELO) (inverse ~ matching coefficient)

(fourth order)(third order)(second order)

Dead Zone: 1-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to “unordered” non-log-enhanced configurations
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ψAR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : Θord PLL → ΘordPariPLL = Θord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including −∞, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p⊥-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ψPS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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S M O OT H  M A R KO V

Distribution of Log10(PSLO/MELO) (inverse ~ matching coefficient)

Leading Order, Leading Color, Flat phase-space scan, over all of phase space (no matching scale)

No dead zone
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2→4

Generate Trials without imposing strong ordering
At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching
+ smooth ordering beyond matched multiplicities
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p⊥ and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z → 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p⊥, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD ma-
trix elements, using ARIADNE’s definition of p⊥ and VINCIA’s smooth suppression factor instead of
the usual strong ordering condition. This corresponds to the default in VINCIA without matching.
(Note: by default, matching to Z → 4 is on in VINCIA, over all of phase space, and hence these ratios
are all equal unity).
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD ma-
trix elements, using the ARIADNE definition of p⊥, which is also the default evolution variable in
VINCIA. Most of the double-counting evident for phase-space ordering has been removed, and the
shower approximation now also gives the correct answer in the double-collinear region at the top of
the lower left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper
left-hand plot. The size of the dead zone in the flat phase-space scan amounts to about 2% of all
sampled points.
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Figure 16: Smoothly ordered matched parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], full color (summed over color permutations). Compare to
the unmatched shower distributions in figs. 10, 14, and 15.

In fig. 16, we show the weight ratios discussed earlier (which are essentially just the inverses of
PME

n ), for Z → 5 and Z → 6 partons, now including matching at each preceding order. For the shower
approximations, we use the default smoothly ordered NLC-improved GGG antennæ, with three different
kinematics maps (solid histogram, thin solid line, and dashed lines, respectively). We also compare to
the same settings as the solid histogram but using the ARIADNE radiation functions instead of the GGG
ones (thick solid lines). Comparing these distributions to those in fig. 14, we see that the differences
between the shower models are largely canceled by the matching to the preceding orders, as expected. At
each order, now only a relatively well-controlled and stable matching correction remains, which does not
appear to exhibit any significant deterioration order by order. Note that we have not applied any phase
space cuts here, and hence we find no evidence for any remaining subleading divergences in the matrix
elements leading to problems in this approach. This is in sharp contrast to slicing- or subtraction-based
approaches, where a non-zero matching scale is obligatory beyond the first matched order.

A note on color factor normalizations. Obviously, if the leading-color pieces are not normalized
the same way in two different approaches, the subleading terms must likewise appear different. This,
e.g., leads to some apparent differences between MADGRAPH and the GGG antennæ. With color and
coupling factors, the MADGRAPH-GGG correspondence for the Z → qggq̄ antenna is:

g4
sAGGG

4 (0, 1, 2, 3) =
2|M4LC(0, 1, 2, 3)|2

Ĉ2
F |M2(s)|2

, (116)

where the factor 2 on the MADGRAPH matrix element cancels the color averaging factor which is
already present in |M4LC|2, which represents a MADGRAPH matrix element with only one element
non-zero in the color matrix, the one corresponding to the (0, 1, 2, 3) color flow squared. In particular,
note that the LC coefficient in MADGRAPH comes with Ĉ2

F , whereas, in order to construct the full
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ψAR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : Θord PLL → ΘordPariPLL = Θord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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Uncertainty Variations

A result is only as good as its uncertainty
Normal procedure:

Run MC 2N+1 times (for central + N up/down variations)

Takes 2N+1 times as long 

+ uncorrelated statistical fluctuations 

Automate and do everything in one run
VINCIA: all events have weight = 1

Compute unitary alternative weights on the fly
→ sets of alternative weights representing variations (all with <w>=1)

Same events, so only have to be hadronized/detector-simulated ONCE!
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Uncertainties

For each branching, 
recompute weight for:

- Different renormalization scales

- Different antenna functions

- Different ordering criteria

- Different subleading-color treatments

16

Weight

Nominal 1

Variation

for a particular branching, the same branching would have happened with the relative probability

P2 =
αs2a2

αs1a1
P1 , (118)

in a different model that uses αs2 as its coupling (e.g., with a different renormalization scale or scheme)
and a2 as its radiation function (e.g., with different finite terms, different partitioning of shared poles,
different subleading or higher-order corrections, or even a different ordering criterion).

This, however, is not quite sufficient. Effectively, only the tree-level expansion of the shower would
be affected by keeping track of such relative probabilities down along the shower chain; the Sudakov
factors would remain unmodified. Such a procedure would therefore explicitly break the unitarity that is
so important to resummation applications, leading to possibly exponentially different weights between
the sets, which would be hard to interpret7. More intuitively, a big uncertainty on a very soft branching
happening late in the shower should not be able to significantly change the entire event weight, jets
and all. In the normal shower approach, it is the property of unitarity which keeps such things from
happening; as soon as any correction grows large, its associated Sudakov factor must necessarily become
small soon thereafter, keeping the total size of any correction inside a unit-probability integral.

The main part of our proposal therefore concerns a simple way to restore unitarity explicitly also for
the uncertainty variations, as follows. For each accepted branching, a number of trial branchings have
usually first been generated and discarded, to eliminate the overcounting done by the trial function. In
VINCIA, we have so far not been particularly careful to optimize the choice of trial function (see Section
2.2), and hence we have quite many failed trials. These are relatively cheap to generate, however, so the
code is not significantly slowed by this inefficiency. Moreover, these failed trials actually turn out to be
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Just like eq. (118) expresses the relative probability for a branching to be accepted under two dif-
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role of uncertainty variation, it is also possible to ask what the probability of a failed trial to have failed
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erator (which corresponds to the settings chosen by the user in VINCIA, including matching, subleading
corrections, etc.) is
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whereas the one for the alternative model should be
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+ Unitarity+ Matching

Differences explicitly matched out 

(Up to matched orders)

(Can in principle also include 
variations of matching scheme…)



1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

1/
N

 d
N

/d
(1

-T
)

-310

-210

-110

1

10 L3 
Vincia

1-Thrust (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + Pythia 8.145

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

R
el

.U
nc

.

0

1

Rµ

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4 1-T (udsc)

0 0.1 0.2 0.3 0.4 0.5

1/
N

 d
N

/d
(1

-T
)

-310

-210

-110

1

10 L3 
=pT/2µ

=2pTµ

1-Thrust (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + Pythia 8.145

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4

Figure 17: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the renormal-
ization scale. L3 data from ref. [55]. Unmatched.

the result of the variations, all matching is switched off, and hence the uncertainty bands are rather
larger than would be the case for default VINCIA settings. The L3 data (black points) [55] are included
mostly to provide a constant reference across the plots; we postpone discussion of them to the section on
LEP comparisons (Section 8). The top panels of each the plots shows MC compared to data, with both
normalized to unity. The bottom panels show the ratio MC/data, with the uncertainties on the data shown
as yellow bands, the inner (lighter) one corresponding to the statistical component only and the outer
(darker) shade corresponding to statistical plus systematic errors (added linearly, to be conservative).

Comparing Figs. 17 and 18, one observes that the two different variations lead to qualitatively dif-
ferent shapes on the uncertainty predictions. The renormalization scale uncertainty, Fig. 17, produces
an uncertainty band of relatively constant size over the whole range of Thrust, whereas the finite terms,
Fig. 18, only contribute to the uncertainty for large values of τ = 1− T , as expected. Comparing left to
right in both figures, we conclude that both the features and the magnitude of the full uncertainty bands
on the right are well reproduced by the weight variations on the left.

Available Variations: So far, five types of automatic variations have been included in the VINCIA
code, starting from version 1.025, via a simple on/off switch. These uncertainty variations are:

• VINCIA’s default settings. This is obviously not a true uncertainty variation, but is provided as a
useful comparison reference when the user has changed one or more parameters.

• MAX and MIN variations of the renormalization scale. The default variation is by a factor of 2
around p⊥.

• MAX and MIN variations of the antenna function finite terms. The default variation corresponds
to an integrated ±2 gluons for gluon emission antennae, and an integrated 1

2 splitting, for gluon
splitting, uniformly distributed over the antenna phase space.
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Figure 18: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the antenna-
function finite terms. L3 data from ref. [55]. Unmatched.

• Two variations in the ordering variable, one being closer to strong ordering in p⊥ and the other to
ordering in themD variable.

• MAX and MIN variations of the subleading color corrections. The specific nature of the variation
depends on whether subleading corrections are switched on in the shower or not. If not, the MAX
variation uses CA for all gluon emission antennae and the MIN one ĈF . If on, the correction
described in Section 4.4 is applied, but the correction itself is then modified by ±50% for the
MAX and MIN variations here.

These variations are provided as alternative weight sets for the generated events, which are available
through methods described in the program’s online manual. For more advanced users, some limited
user control over the variations is also included, such as the ability to change the factor of variation of
the renormalization scale.

When combining several variations to compute the total uncertainty, we advise to take just the largest
bin-by-bin deviations (in either direction) as representing the uncertainty. We believe this is better than
adding the individual terms together either linearly or quadratically, since the latter would have to be
supplemented by a treatment of correlations that we don’t know. With the maximal-deviation approach,
we are free to add as many uncertainty variations as we like, without the number of variations by itself
leading to an inflation of the error.

We should also note that, in the VINCIA code, matching coefficients etc. are calculated for each
uncertainty variation separately. The size of each band is therefore properly reduced, as expected, when
switching on corrections that impact that particular source of uncertainty.

Finally, we note that, though the speed of the calculation is typically not significantly affected by
adding uncertainty variations, the code does run slightly faster without them. We therefore advise to
keep them switched off whenever they are not going to be used.
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Sector Showers

Dipole-antenna formalism (2 -> 3)

Two types: - Global
- Sector

for any P.S. point{
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Dipole-antenna formalism (2 -> 3)

Two types: - Global
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sector implementation

Implementation based on the global shower setup.

Antenna functions are different than in the global case.    
→ Challenges  (partitioning of collinear radiation singularities)

Different criteria for separating sectors in phase space 
Looking for “best” sub-LL behavior. 
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results->ff

Test: fragmentation function for a quark 

PS, Weinzierl: Phys.Rev.D79 (2009)   ;   Nagy, et al. JHEP 0905 (2009) 088

Hard emissions:
 bad analytic approx.

x→1
No energy loss

x→0
Total energy loss

Asymptotic 
behavior

5

VINCIA 1.026 + PYTHIA 8.150

http://inspirebeta.net/author/Nagy%2C%20Zoltan?recid=811667&ln=en
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results -> Speed
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Matched through: Z→3 Z→4 Z→5 Z→6
Pythia 6 0.20 ms/event

 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 
gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

ms/event
 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 

gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

ms/event
 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 

gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memoryPythia 8 0.22
ms/event

 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 
gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

ms/event
 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 

gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

ms/event
 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 

gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

Vincia Global 0.30 0.77 6.40 130.00

Vincia Sector 0.27 0.63 6.90 52.00

Vincia Global (Qmatch = 5 GeV) 0.29 0.60 2.40 20.00

Vincia Sector (Qmatch = 5 GeV) 0.26 0.50 1.40 6.70

Sherpa (Qmatch = 5 GeV) 5.15* 53.00* 220.00* 400.00*
* + initialization time 1.5 minutes 7 minutes 22 minutes 2.2 hours
Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

J. Lopez-Villarejo & PS, arXiv:1109.3608

http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608
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http://projects.hepforge.org/vincia

Next steps

Multi-leg one-loop matching 
(with L. Hartgring & E. Laenen, NIKHEF)

Polarized Showers 

(with A. Larkoski, SLAC, & J. Lopez-Villarejo, CERN)

→ Initial-State Showers 
(with W. Giele, D. Kosower, G. Diana, M. Ritzmann)

VINCIA Status

Plug-in to PYTHIA 8 

Stable and reliable for Final-
State Jets (E.g., LEP)

Automatic matching and 
uncertainty bands

improvements in shower 
(smooth ordering, NLC, Matching, …)

Paper on mass effects ~ ready 
(with A. Gehrmann-de-Ridder & M. Ritzmann)

http://projects.hepforge.org/vincia/
http://projects.hepforge.org/vincia/
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P. Skands - New Developments in Parton Showers

Simple Solution

Generate Trials without imposing strong ordering
At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching
(revert to strong ordering beyond matched multiplicities)
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Phasespace-Ordering
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Figure 24: Phase-space-ordered antenna approximation compared to 2nd order QCD matrix elements.
Note: this roughly corresponds to a mass-ordered parton shower without coherence. Although the
double-soft limit is eventually reached, there is a large overcounting over most of phase space, reflecting
a lack of coherence. Also, the double counting extends into the double-collinear region at the top of the
lower left-hand plot. This ordering, therefore, does not lead to the correct multiple-collinear singular
limit.
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Transverse-Momentum-Ordering (ARIADNE)
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p⊥, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Dead Zone Overcounting



P. Skands - New Developments in Parton Showers

(Subleading Singularities)

Isolate double-collinear region:

Z→4 : [q,g,g,qbar] with mgg = mZ 

29

Smooth Transverse-Momentum-Ordering (VINCIA)
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p⊥ and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z → 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Energy-Ordering (DM)

4E∗2
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Figure 28: Energy-Ordered antenna approximation compared to 2nd order QCD matrix elements, using
a definition of energy a la Dokshitzer-Marchesini (DM). Although a small dead zone in the unordered
region still exists (0.6% of the sampled points), there remains a very large overcounting over significant
parts of phase space, including the double-collinear region mentioned before, at the top of the lower
left-hand plot. We conclude that this variable does not lead to the correct multiple-collinear singular
limit.
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LEP event shapes
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Figure 20: Comparison to the L3 light-flavor data set [55] (black points) at the Z pole for the 1−T (left),
C (middle), and D (right) event shape variables. VINCIAis shown in thin blue lines, with shaded light-
blue bands representing the perturbative uncertainty estimate. The middle pane on each plot illustrates
the relative composition of the VINCIA uncertainty band. For comparison, the PYTHIA8 result is shown
with a thick red line with open circles.

8 Comparison to LEP Data

To keep questions of mass effects separate (the implementation of which will be reported on in a separate
paper [51]), we shall here mainly compare to a useful data set presented by the L3 collaboration [55], in
which the contributions from light flavors (defined as u, d, s, c) has been separated from that of events
containing b quarks.

Unfortunately, however, the L3 light-flavor data set does not contain jet observables. We therefore
include comparisons also to ALPEH and DELPHI jet observables that include all flavors, using a pre-
liminary implementation of mass effects in VINCIA [51]. Since the largest correction specific to b quarks
is simply the B meson decay, for which we rely on PYTHIA’s string hadronization and hadron decay
model, we believe these comparisons are still meaningful, even if we must postpone a full discussion of
them to the follow-up study in ref. [51].

In Fig. 20, we compare default VINCIA and PYTHIA to the L3 light-flavor data for the Thrust (left)
and the C (middle) andD (right) event shape parameters [55]. Dashed vertical lines indicate the bound-
aries between the 3- and 4-jet regions for the Thrust and C parameter (the right-most dashed line on the
Thrust plot indicates the boundary of the 5-jet region). The D parameter measures the deviation from
planar events and is a 4-jet observable over its entire range. Despite substantial differences in the shower
modeling, matching level, and hadronization tune parameters, the two models give almost identical re-
sults. Further, since PYTHIA is already giving a very good description of this data, there is little for the
additional matching in VINCIA to improve on here.

Still on Fig. 20, VINCIA’s uncertainty bands give about a 20% uncertainty over most of the observ-
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PYTHIA 8 already doing a very good job
VINCIA adds uncertainty bands + can look at more exclusive observables?



Multijet resolution scales

y45 = scale at which 5th jet becomes resolved ~ “scale of 5th jet”
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Figure 23: Comparison to ALEPH jet resolution measurements [56] (black points) at the Z pole. VIN-
CIAis shown in thin blue lines, with shaded light-blue bands representing the perturbative uncertainty
estimate. The middle pane on each plot illustrates the relative composition of the VINCIA uncertainty
band. For comparison, the PYTHIA8 result is shown with a thick red line with open circles.

from matching to the 4-parton matrix elements, and both codes are able to describe the 4-jet angles
within a roughly 5% margin, which is comparable to the experimental precision.

Finally, in Fig. 23, we compare to the jet resolutions measured by the ALEPH experiment [56].
Firstly, note that pure PYTHIA is basically able to describe all the distributions, within the experimental
accuracy, despite its being matched only to Z → 3 partons. On the one hand, this is good, since it
implies that the PYTHIA 8 shower is delivering a quite good approximation to QCD also beyond the
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4-Jet Angles
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Figure 22: Comparison to DELPHI 4-jet angle measurements (black points) at the Z pole. VINCIAis
shown in thin blue lines, with shaded light-blue bands representing the perturbative uncertainty estimate.
The middle pane on each plot illustrates the relative composition of the VINCIA uncertainty band. For
comparison, the PYTHIA8 result is shown with a thick red line with open circles.

better understanding of the full uncertainties. All we can say at this level is that the charged-multiplicity
distribution appears to suffer from a larger perturbative uncertainty than the fragmentation spectrum.

A further set of variables that is interesting in the context of differential multi-jet production are the
so-called four-jet angles, which were also measured at LEP. Not having found a public data repository
containing this particular data, however, we instead resorted to extracting the data point values from the
HERWIG++ source code [35], where it is encoded for validation and tuning purposes. A comparison
between this data and default VINCIA and PYTHIA is shown in Fig. 22. Again, it is clear that PYTHIA
itself is already doing a very good job. Since PYTHIA is not matched to 4-jet matrix elements and
also does not contain explicit spin correlations in the shower, this may at first be surprising. However,
PYTHIA does correlate the production and decay planes of gluons in the shower, and thereby includes
the leading effect of gluon polarization. The VINCIA shower, on the other hand, contains no polarization
effects a priori. In VINCIA’s case, the effective correlations of the four-jet angles are instead coming
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Interesting to look at more exclusive observables, but which ones?

4-jet angles
Sensitive to 
polarization effects

Good News
VINCIA is doing 
reliably well

Non-trivial verification 
that shower+matching 
is working, etc. 

Higher-order 
matching needed?

PYTHIA 8 already 
doing a very good job 
on these observables


