

Nordic Workshop on LHC and Beyond (NORDITA Workshop on TeV Scale Physics and Dark Matter)
12–14 June 2008
Alba Nova, Stockholm, Sweden

Introduction to PYTHIA 8

Torbjörn Sjöstrand

Department of Theoretical Physics, Lund University

The Oracle of Delphi: ca. 1000 B.C. — 390 A.D.

PYTHIA history

The structure of an event

Warning: schematic only, everything simplified, nothing to scale, ...

Incoming beams: parton densities

Beam remnants and other outgoing partons

Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

The strings fragment to produce primary hadrons

Many hadrons are unstable and decay further

These are the particles that hit the detector

On To C++

Currently HERWIG and PYTHIA are successfully being used, also in new LHC environments, using C++ wrappers

Q: Why rewrite?

A1: Need to clean up!

A2: Fortran 77 is limiting

Q: Why C++?

A1: All the reasons for ROOT, Geant4, ...

("a better language", industrial standard, ...)

A2: Young experimentalists will expect C++

(educational and professional continuity)

A3: Only game in town! Fortran 90

So far mixed experience:

- Conversion effort: everything takes longer and costs more (as for LHC machine, detectors and software)
- The physics hurdle is as steep as the C++ learning curve

C++ Players

PYTHIA 7 project \Longrightarrow **ThePEG**Toolkit for High Energy Physics Event Generation (L. Lönnblad; D. Grellscheid, P. Richardson)

ARIADNE/LDC: to do ISR/FSR showers, multiple interactions (L. Lönnblad; N. Lavesson)

HERWIG++: complete reimplementation
November 2007: first full-fledged version (2.1; now 2.2.0)
(P. Richardson; M. Bähr, S. Gieseke, M. Gigg, D. Grellscheid,
K. Hamilton, O. Latunde-Dada, S. Plätzer, M.H. Seymour,
A. Sherstnev, B.R. Webber, arXiv:0803:0883)

SHERPA: new program, written from scratch operational since ~2006 (now 1.1.0 (first independent of Fortran PYTHIA)) (F. Krauss; T. Gleisberg, S. Hoeche, R. Matyszkiewicz, S. Schumann, F. Siegert, J. Winter)

PYTHIA 8: complete reimplementation
October 2007: first full-fledged version (8.100; now 8.108)
(T. Sjöstrand, S. Mrenna, P. Skands,
Comput. Phys. Comm. **178** (2008) 852 [arXiv:0710.3820])

MCnet

- EU Marie Curie training network
- Approved for four years starting 1 Jan 2007
- Involves THEPEG/ARIADNE, HERWIG, SHERPA and PYTHIA ●
 (CERN, Durham, Lund, Karlsruhe, UC London; leader: Mike Seymour)
- 4 postdocs & 2 graduate students: generator development and tuning
 - short-term studentships: 33 @ 4 months each ●
 (applications processed every three months; next deadline 30 June)
 theory or experiment
 - Annual Monte Carlo school: ●
 Durham, UK, 18 20 April 2007
 CTEQ MCnet, Debrecen, Hungary, 8 16 August 2008
 Lund 2009, 30 June 2 July ??
- Support for other such schools: ●
 Physics at the Terascale Monte Carlo School, DESY, 21 24 April 2008
 - non-EU participation up to 30%

PYTHIA Physics (part I)

Hard processes:

- Built-in library of many leading-order processes.
 Standard Model: almost all 2 → 1 and 2 → 2, a few 2 → 3.
 Beyond the SM: a bit of each (PYTHIA 8 not yet SUSY and TC).
- External input via Les Houches Accord and Les Houches Event Files from MadGraph, CompHep, AlpGen, ...
- Resonance decays, often but not always with angular correlations.

Showers:

- Transverse-momentum-ordered ISR & FSR, but PYTHIA 6 still older virtuality-ordered as default.
- Includes $q \to qg$, $g \to gg$, $g \to q\overline{q}$, $f \to f\gamma$, $\gamma \to f\overline{f}$ (f = fermion).
- ISR by backwards evolution.
- Dipole-style approach to recoils.
- Matching to ME's for first (=hardest) emission in many processes, especially gluon emission in resonance decays.

PYTHIA Physics (part II)

Underlying events and minimum-bias events:

- Multiple parton–parton interactions, with dampening of cross-section in $p_{\perp} \rightarrow 0$ limit, impact-parameter dependence, and tailormade PDF's.
- Combined evolution MI + ISR + FSR downwards in p_{\perp} .
- Beam remnants colour-connected to interacting systems, and detailed modelling of flavour and momentum structure.

Hadronization:

- String fragmentation ("the Lund Model").
- Particle decays, usually isotropic.
- Link to external decay packages, say for τ (TAUOLA) or B (EVTGEN).
- Optional Bose-Einstein effects.

Utilities:

- Four-vectors, random numbers, parton densities, . . .
- Event study routines: sphericity, thrust, jet finding.
- Simple built-in histogramming package (line-printer mode).

Key differences between PYTHIA 6.4 and 8.1

Old features definitely removed include, among others:

- independent fragmentation
- mass-ordered showers

Features omitted so far include, among others:

- ullet ep, γ p and $\gamma\gamma$ beam configurations
- several processes, especially SUSY & Technicolor

New features, not found in 6.4:

- interleaved p₊-ordered MI + ISR + FSR evolution
- richer mix of underlying-event processes $(\gamma, J/\psi, DY, ...)$
- possibility for two selected hard interactions in same event
- possibility to use one PDF set for hard process and another for rest
- elastic scattering with Coulomb term (optional)
- updated decay data

Plans for the future:

- rescattering in multiple interactions (with Florian Bechtel & Richard Corke)
- more ME/PS matching (with Richard Corke)

PYTHIA 8 structure

Example of a main program

```
// File: main01.cc. The charged multiplicity distribution at the LHC.
#include "Pythia.h"
using namespace Pythia8;
int main() {
  // Generator. Process selection. LHC initialization. Histogram.
 Pythia pythia;
  pythia.readString("HardQCD:all = on");
  pythia.readString("PhaseSpace:pTHatMin = 20.");
  pythia.init( 2212, 2212, 14000.);
  Hist mult("charged multiplicity", 100, -0.5, 799.5);
  // Begin event loop. Generate event. Skip if error. List first one.
  for (int iEvent = 0; iEvent < 100; ++iEvent) {</pre>
    if (!pythia.next()) continue;
    if (iEvent < 1) {pythia.info.list(); pythia.event.list();}</pre>
    // Find number of all final charged particles and fill histogram.
    int nCharged = 0;
    for (int i = 0; i < pythia.event.size(); ++i)</pre>
      if (pythia.event[i].isFinal() && pythia.event[i].isCharged())
        ++nCharged;
    mult.fill( nCharged );
  // End of event loop. Statistics. Histogram. Done.
  pythia.statistics();
  cout << mult;</pre>
  return 0;
```

Initialization and generation commands

Standard in beginning:

- #include "Pythia.h"using namespace Pythia8;
- Pythia pythia;

Initialization by one of different forms:

- \bullet pythia.init(idA, idB, eA, eB) along $\pm z$ axis
- pythia.init(idA, idB, eCM) in c.m. frame
- pythia.init("filename") for Les Houches Event Files
- pythia.init() takes above kinds of input from "cards"
- pythia.init(LHAinit*, LHAevnt*) for Les Houches Accord returns false if failed (normally user setup mistake!)

Generation of next event by:

• pythia.next()
with no arguments, but value false if failed (rare!)

At the end of the generation loop:

pythia.statistics()provides some summary information

Settings and Particle Data

Can read in settings and particle data changes by

- pythia.readString("command")
- pythia.readFile("filename") with one command per line in file

Settings come in four kinds

- Flags: on/off switches, bool

 (on = yes = ok = true = 1, off = no = false = 0)
- Modes: enumerated options, int
- Parms: (short for parameters) continuum of values, double
- Words: characters (no blanks), string

```
and command is of form task:property = value, e.g.
```

PartonLevel:ISR = off no initial-state radiation

SigmaProcess:alphaSorder = 0 freeze α_s

TimeShower:pTmin = 1.0 cut off final-state radiation at 1 GeV

To access **particle data**, instead command should be of form id:property = value or id:channel:property = value, e.g. $3122:mayDecay = no do not allow <math>\Lambda^0$ to decay $215:3:products = 211 111 111 to let <math>a_2^+ \to \pi^+\pi^0\pi^0$

Note: case-insensitive search/matching in databases!

Example of a "cards" file

```
! This file contains commands to be read in for a Pythia8 run.
! Lines not beginning with a letter or digit are comments.
! 1) Settings that could be used in a main program, if desired.
Beams:idA = 2212
                                  ! first beam, p = 2212, pbar = -2212
                                  ! second beam, p = 2212, pbar = -2212
Beams:idB = 2212
Beams: eCM = 14000.
                                  ! CM energy of collision
Main:numberOfEvents = 1000
                                  ! number of events to generate
Main:numberToList = 2
                                  ! number of events to print
Main:timesToShow = 20
                                  ! show how far along run is
                                  ! print changed flags/modes/parameters
Main:showChangedSettings = on
Main:showAllSettings = off
                                  ! print all flags/modes/parameters
! 2) Settings for the hard-process generation.
HiggsSM:gg2H = on
                                  ! Higgs production by gluon-gluon fusion
25:m0 = 123.5
                                  ! Higgs mass
25: onMode = off
                                  ! switch off all Higgs decay channels
25: onIfMatch = 22 22
                                  ! switch back on Higgs -> gamma gamma
                                  ! alpha_s(m_Z) in matrix elements
SigmaProcess:alphaSvalue = 0.12
! 3) Settings for the subsequent event generation process.
SpaceShower:alphaSvalue = 0.13
                                  ! alpha_s(m_Z) in initial-state radiation
MultipleInteractions:pTORef = 3.0 ! pT_0 regularization at reference energy
#PartonLevel:MI = off
                                ! no multiple interactions
#PartonLevel:ISR = off
                              ! no initial-state radiation
#PartonLevel:FSR = off
                                   ! no final-state radiation
#HadronLevel:Hadronize = off
                                   ! no hadronization
```

ProcessGroup	ProcessName		
SoftQCD	minBias, elastic, singleDiffractive,		
	doubleDiffractive		
HardQCD	gg2gg, gg2qqbar, qg2qg, qq2qq, qqbar2gg,		
	qqbar2qqbarNew, gg2ccbar, qqbar2ccbar,		
	gg2bbbar, qqbar2bbbar		
PromptPhoton	qg2qgamma, qqbar2ggamma, gg2ggamma,		
	ffbar2gammagamma, gg2gammagamma		
WeakBosonExchange	ff2ff(t:gmZ), ff2ff(t:W)		
WeakSingleBoson	ffbar2gmZ, ffbar2W, ffbar2ffbar(s:gm)		
WeakDoubleBoson	ffbar2gmZgmZ, ffbar2ZW, ffbar2WW		
WeakBosonAndParton	qqbar2gmZg, qg2gmZq, ffbar2gmZgm, fgm2gmZf		
	qqbar2Wg, qg2Wq, ffbar2Wgm, fgm2Wf		
Charmonium	gg2QQbar[3S1(1)]g, qg2QQbar[3PJ(8)]q,		
Bottomonium	gg2QQbar[3S1(1)]g, gg2QQbar[3P2(1)]g,		
Top	gg2ttbar, qqbar2ttbar, qq2tq(t:W),		
	ffbar2ttbar(s:gmZ), ffbar2tqbar(s:W)		
FourthBottom	rthBottom gg2bPrimebPrimebar, qq2bPrimeq(t:W),		
FourthTop	qqbar2tPrimetPrimebar, fbar2tPrimeqbar(s:W),		
FourthPair ffbar2tPrimebPrimebar(s:W), fbar2tauPrimenuPri			
HiggsSM			
HiggsBSM	h, H and A as above, charged Higgs, pairs		
SUSY	qqbar2chi0chi0 (SUSY barely begun)		
NewGaugeBoson	ffbar2gmZZprime, ffbar2Wprime, ffbar2R0		
LeftRightSymmmetry	ffbar2ZR, ffbar2WR, ffbar2HLHL,		
LeptoQuark	q12LQ, qg2LQ1, gg2LQLQbar, qqbar2LQLQbar		
ExcitedFermion	dg2dStar, qq2uStarq, qqbar2muStarmu,		
ExtraDimensionsG* gg2G*, qqbar2G*,			

Online manual \Longrightarrow Graphical User Interface

Example: timelike parton showers

Manual Sections

Program Overview

Frontpage
Program Flow
Settings Scheme
Particle Data Scheme
Program Files
Sample Main Programs

Setup Run Tasks

Save Settings
Main-Program Settings
Beam Parameters
Random-Number Seed
PDF Selection
Master Switches
Process Selection

- QCD
- Electroweak
- Onia
- Top
- Fourth Generation
- Higgs
- SUSY
- New Gauge Bosons
- Left-Right Symmetry
- Leptoquark

- Compositeness
- Extra Dimensions

A Second Hard Process

Phase Space Cuts

Couplings and Scales

Standard-Model Parameters

Total Cross Sections

Resonance Decays

Timelike Showers

Spacelike Showers

Multiple Interactions

Beam Remnants

Fragmentation

Flavour Selection

Particle Decays

Bose-Einstein Effects

Particle Data

Error Checks

Tunes

Study Output

Four-Vectors
Particle Properties
Event Record
Event Information

Event Statistics
Histograms
Event Analysis
HepMC Interface

Link to Other Programs

Les Houches Accord
Access PYTHIA 6 Processes
Semi-Internal Processes
Semi-Internal Resonances
Hadron-Level Standalone
SUSY Les Houches Accord
Beam Shape
Parton Distributions
External Decays
User Hooks
Random Numbers
Implement New Showers

Reference Materiel

PYTHIA 6 Translation Table Update History Bibliography Glossary Version

The Event and Particle classes

Two Event objects inside a Pythia object:

- process: hard subprocess, roughly like Les Houches.
- event : complete event history.

```
An Event pprox a vector<Particle>
```

Each Particle object stores the properties:

- id(): particle identity, by PDG codes.
- status(): status code. Provides info on where and why a given particle was produced. Negative code = no longer existing particle.
- mother1(), mother2(): first and last mother indices.
- daughter1(), daughter2(): first and last daughter indices.
- col(), acol(): colour and anticolour tags, Les Houches Accord.
- px(), py(), pz(), e(), m(): four-momentum and mass (GeV).
- xProd(), yProd(), zProd(), tProd(): production vertex (mm).
- tau(): proper lifetime.
- some more, e.g. name & charge (via pointer to particle database)
- + Further event information, on hard subprocess PDF's and much more.

The Bigger Picture

need standardized interfaces (LHA/LHEF, LHAPDF, SUSY LHA, HepMC, ...)

Links to other program

PYTHIA is standalone, but several ways to link to it.

Possibilities similar to PYTHIA 6.4:

- Input from Les Houches Accord & Les Houches Event Files
- Output to HepMC event format (more robust than PYTHIA 6!?)
- SUSY Les Houches Accord (input file with masses, couplings, ...)
- ullet Link to external decays, e.g. for au and B.
- Link to LHAPDF version 5.3.0 or later, or to your own PDF.

New possibilities, based on derived classes and pointers to them:

• Semi-internal process: write derived matrix-element class,

```
SigmaProcess* mySigma = new MySigma();
pythia.setSigmaPtr( mySigma);
```

and let PYTHIA do phase space integration, process mixing, ...

- Semi-internal resonance in same style: calculate partial widths
- Link to external random-number generator.
- Link to external shower, e.g. VINCIA for FSR.
- User hooks: veto events early on or reweight cross section.

Modelling multiple interactions

T. Sjöstrand, M. van Zijl, PRD36 (1987) 2019: first models for event properties based on perturbative multiple interactions, still in frequent use (Tune A, Tune DWT, ATLAS tune, ...)

- Is only a model for nondiffractive events, i.e. for $\sigma_{nd} \simeq (2/3)\sigma_{tot}$
- Smooth turn-off at $p_{\perp 0}$ scale

$$\frac{\mathrm{d}\widehat{\sigma}}{\mathrm{d}p_{\perp}^2} \propto \frac{\alpha_\mathrm{S}^2(p_{\perp}^2)}{p_{\perp}^4} \rightarrow \frac{\alpha_\mathrm{S}^2(p_{\perp0}^2 + p_{\perp}^2)}{(p_{\perp0}^2 + p_{\perp}^2)^2}$$

- Require ≥ 1 interaction in an event
- Interactions generated in ordered sequence $p_{\perp 1} > p_{\perp 2} > p_{\perp 3} > \dots$ by "Sudakov" trick (what happens "first"?)

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp i}} = \frac{1}{\sigma_{\mathrm{nd}}}\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}}\exp\left[-\int_{p_{\perp}}^{p_{\perp}(i-1)}\frac{1}{\sigma_{\mathrm{nd}}}\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}'}\mathrm{d}p_{\perp}'\right]$$

- After each interaction rescaled new PDF's for momentum conservation
- ullet Leads to n_{int} narrower than Poissonian, except that ...

Hadrons are extended,
e.g. double Gaussian ("hot spots"):

$$\rho_{\mathrm{matter}}(r) = N_1 \exp\left(-\frac{r^2}{r_1^2}\right) + N_2 \exp\left(-\frac{r^2}{r_2^2}\right)$$

where $r_2 \neq r_1$ represents "hot spots"

- Events are distributed in impact parameter b
- Overlap of hadrons during collision

$$\mathcal{O}(b) = \int d^3 \mathbf{x} dt \; \rho_{1,\text{matter}}^{\text{boosted}}(\mathbf{x}, t) \rho_{2,\text{matter}}^{\text{boosted}}(\mathbf{x}, t)$$

- Average activity at b proportional to $\mathcal{O}(b)$
 - ⇒ central collisions normally more active
 - $\Rightarrow \mathcal{P}_n$ broader than Poissonian
- ullet Time-consuming (b,p_{\perp}) generation
- Problems if many valence quarks kicked out
 ⇒ Simplify after first interaction:
 only gg or qq outgoing, no showers, ...

Multiple Interactions: A New Evolution Equation

	time	evolution	probability
FSR	forwards	$p_{\perp} \searrow 0$	normal & local
ISR	backwards	$p_{\perp} \searrow 0$	conditional
MI	simultaneous	$p_{\perp} \searrow 0$	conditional

ISR + MI: PDF competition ⇒ interleaving (PYTHIA 6.3)

FSR: previously at end, now also interleaved (PYTHIA 8.1):

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} = \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}p_{\perp}} \right)$$

$$\times \exp\left(-\int_{p_{\perp}}^{p_{\perp i-1}} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}p_{\perp}'} \right) \mathrm{d}p_{\perp}' \right)$$

"resolution evolution"

Monte Carlo: winner takes all

+ many other assumptions/models

Next step: rescattering added in same spirit

PYTHIA 8 status

task status administative structure operational; extensions planned much of PYTHIA 6; SUSY & TC & more to do hard processes, internal much of PYTHIA 6; SUSY & TC & more to do resonance decays interfaces to LHA F77, LHEF, PYTHIA 6 hard processes, external SUSY(+more) parameters SLHA2; more needed initial-state showers operational operational final-state showers matching ME's to showers some exists; much more needed multiple interactions operational; extensions planned beam remnants & colour flow operational; alternatives to come parton densities only 2 internal, but interface to LHAPDF string fragmentation operational; improvements planned decays & particle data operational; may need updates operational; off by default (tuning) **Bose-Finstein** some simple tools; may be enough analysis graphical user interface operational; could be extended tuning major task for MCnet postdocs! major task for experimentalists! testing not in the foreseeable future ep, γ p, $\gamma\gamma$

News since PYTHIA 8.100

- Acolliner beams and beam momentum spread.
- Beam vertex spread.
- Reduced use of static:
 possibility to have several almost separate Pythia instances,
 e.g. signal + background events in pileup.
- Combine event records with new = and += methods.
- Updated SusyLesHouches interface handles SLHA version 2.
- Neutralino pair production now operational.
- Updated routine for HepMC conversion; support for version 1 dropped; bug fix for onium \rightarrow ggg or γ gg.
- Improved capability for standalone hadronization.
- Improved handling of Higgs width.
- Safety checks on α_s at small scales.
- Changed for compilation with gcc 4.3.0 and with -Wshadow option.
- Some further minor improvements and bug fixes.

Trying It Out

- Download pythia8108.tgz from
 http://www.thep.lu.se/~torbjorn/Pythia.html
- tar xvfz pythia8108.tgz to unzip and expand
- cd pythia8108 to move to new directory
- ./configure ... needed for external libraries + debug/shared (see README, libraries: HepMC, LHAPDF, PYTHIA 6)
- make will compile in \sim 3 minutes (for archive library, same amount extra for shared)
- The htmldoc/pythia8100.pdf file contains A Brief Introduction
- Open html in a web browser for the full manual
- Install the phpdoc/ directory on a webserver and open
 phpdoc/Welcome.html in a web browser for an interactive manual
- The examples subdirectory contains > 30 sample main programs: standalone, link to libraries, semi-internal processes, ...

 (make mainNN and then ./mainNN.exe > outfile)
- A Worksheet contains step-by-step instructions and exercises how to write and run a main program

Summary

Legacy PYTHIA 6.418 (9 June):

- reduced but nonzero activity (recently: UED)
- 78,000 lines of code (including comments/blanks).
- 580 page PYTHIA 6.4 Physics and Manual,
 T. Sjöstrand, S. Mrenna and P. Skands,
 JHEP05 (2006) 026 [hep-ph/0603175].
- + update notes, sample main programs, etc.

Current PYTHIA 8.108 (4 May):

- 53,000 lines of code (including comments/blanks),
- 27 page A Brief Introduction to PYTHIA 8.1,
 T. Sjöstrand, S. Mrenna and P. Skands,
 Comput. Phys. Comm. 178 (2008) 852 [arXiv:0710.3820].
- + online manual, sample main programs, worksheets, etc.
- + Thanks to the GENSER group, and especially Mikhail Kirsanov, for help with Makefiles, configure scripts and HepMC interface.
- Adoption of PYTHIA 8 by experimental collaborations has been slow.