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Introduction... to heavy ions vs. proton collisions

e General purpose event generator for pp collision physics and
more.

(Figure: Peter Skands)

e Experimentally focused on hard processes (+ jets), QCD
resummation by parton showers, MPls a sideshow,
hadronization a necessity.



Standard model of heavy ion physics

e Heavy ions traditionally viewed very differently.
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e Experimentally focused on properties of the QGP, viscosity,
temperature, mean-free-path.



Flow: the collective behaviour of heavy ions

e Staple measurement: often modeled with hydrodynamics.
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Hadron abundances: a QGP thermometer

e The temperature when QGP ends: statistical hadronization.
e Describes yields well with few parameters.
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e There are other types of observables (jet quenching, HBT,
quarkonia, ...). But these will be today's focus.



Not so clear division!

e LHC revealed heavy-ion like effects in pp collisions.
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e Are heavy ion collisions

Pb+Pb
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And the transition is
smooth!

and pp collisions then
really that different?
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This seminar: an overview

Pythia soft physics: MPIs and Lund strings.
e So what is really the big deal about pp collectivity?

Generalization to heavy ions: The Angantyr model.

Switching geometries, OO collisions.

Generating flow: string shoving.

Rope hadronization and strangeness.

Hadronic rescatterings (and when it becomes important).

Conclusion and next steps.



MPIs in PYTHIAS pp

e Several partons taken from the
PDF.

e Hard subcollisions with 2 — 2 ME:

Figure T. Sjostrand

dooy  o2(p?) . o2(pt + ply)
dpt Pt (P + Pio)?

e Momentum conservation and PDF scaling.
e Ordered emissions: p|1 > pio> > prg > ... from:

1 dooso /pﬂl 1 do
P(pL = pLi) p—— exp[ . omdrl P




The Lund String

e Non-perturbative phase of final state.
e Confined colour fields ~ strings with tension k ~ 1 GeV/fm.
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The Lund String

e Non-perturbative phase of final state.
e Confined colour fields ~ strings with tension k ~ 1 GeV/fm.

2
e Breaking/tunneling with P o exp (—%) gives hadrons.

Lund symmetric fragmentation function

f(z) x z7Y(1 — z)? exp (‘bz””>.

a and b related to total multiplicity.

Light flavour determination

Pstrange - Pdiquark

p= 6=
Pu ord Pquark

Related to x by Schwinger equation.




Flavours constrained by LEP

e Strings make strong predictions about kinematics.

e Quark/di-quark masses unclear — have to rely on data.
e End of the day O(10) parameters.

e LEP delivers a single string.
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e Used for ep (HERA) and pp (RHIC/LHC) predictions. 10



What'’s the big deal about pp collectivity?!

e Above pp description: Summary of 40 years of successful
phenomenology. Cannot describe collective effects.

e The AA models: Vastly different in assumptions — how well
can they hold at very low multiplicity?

e Two paradigms at the price of one!

@ Reconciliation! Maybe complementary descriptions?

\‘) One has got to givel We cannot have both strings and
thermalization.

Our contribution: as well as possible without QGP

1. Glauber geometry with Gribov colour fluctuations.
2. Attention to diffractive excitation & forward production.
3. Let Lund strings interact with each other.

4. Hadronization and subsequent rescatterings.
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Step 1: Glauber model, add fluctuations

e Concept: Cross sections determine which nucleons interact.
e Added: b-dependent fluctuations —

ability to determine how they interact.
e Trigger process can be specified —

produced by most central sub-collision.
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Cross section colour fluctuations

e Cross section fluctuates event by event: important for pA, v*A
and less AA.

e Projectile remains frozen through the passage of the nucleus.

e Consider fixed state (k) projectile scattered on single target
nucleon:

r (B) = (ps|vy) = <wk,wt|f(5)|wk,wt> =
Z‘Ct‘ Ttk ¢k7¢t|¢ka¢t> =

(c)® D leel Te(b) = (Tew(b))e

e And the relevant amplitude becomes <T£”LV’)(En;)>t

13



Fluctuating nucleon-nucleon cross sections

e Let nucleons collide with total cross section 2(T)p ¢
e Inserting frozen projectile recovers total cross section.

e Consider instead inelastic collisions only (color exchange,
particle production):

doinel _ = N\ D

d2b

e Frozen projectile will not recover original expression, but
requre target average first.

do,, . , . -

2p 20 Tk(b)e — (TZ(B))p = 2(T(b))e,p — ((T(D))2)p

e Need a calculation of T. Can be parametrized.
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Wounded nucleons (Inspired by Biatas and Czyz)

e Emission F(n) per wounded nucleon
— % = n:F(n) + npF(—n).
e F(n) modelled with even gaps in rapidity, as diffraction.
e Tuned to reproduce pp in the n; = n, = 1 case.
e No tunable parameters for AA — though some freedom in
choices along the way.
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Wounded nucleons (Inspired by Biatas and Czyz)

e Emission F(n) per wounded nucleon
— % = n:F(n) + npF(—n).
e F(n) modelled with even gaps in rapidity, as diffraction.
e Tuned to reproduce pp in the n; = n, = 1 case.
e No tunable parameters for AA — though some freedom in
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Some results - pPb

e Centrality measures are delicate, but well reproduced.

e So is charged multiplicity.

(a) Centrality-dependent 7 distribution, pPb, /Sy = 5 TeV.
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Basic quantities in AA

e Reduces to normal Pythia in pp. In AA:

1. Good reproduction of centrality measure.
2. Particle density at mid—-rapidity.

Sum EY” distribution, Pb-Pb /sy = 2.76 TeV
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Switching geometry: what about OO collisions?

e Default Woods-Saxon,
unsuitable for A < 17
nuclei.

'°0 normalized proton density
T T

T T T
—— Va‘riaﬁondl Md
—— Harmonic Oscillator She

o WiP: More geometries
with to be added. User
definable through
HeavyIonUserHooks.

e Problem: How to
estimate parameters?
Theory? Data fits?

4
= —>= 1
p(r) 7T3/2C3 ( +
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Large differences forward

Mock centrality measure: N in 4 < |n| < 5.
V/Snv = 5020 GeV, Tomax = 10 mm/c, =~ 3K
events/minute/thread.

Centrality measure Multiplicity
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e Angantyr a versatile and public model — but of course needs
some input.
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How to add space-time dependence to Lund strings?

e Shopping list:
1. Space time structure (KISS for now, convolution of 2D
Gaussians, Lorentz contracted in z-direction).
2. What effect could generate flow?
3. What effect could change the string tension?

b [fm]
v
L
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Shoving: The cartoon picture

e Strings push each other in transverse space.
e Colour-electric fields — classical force.
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s Transverse-space geometry.
s Particle production mechanism.
7?7 String radius and shoving force 21



MIT bag model, dual superconductor or lattice?

e Easier analytic approaches, eg. bag model:
k = TR?[(®/7R?)?/2 + B]

e Bad: R uncertain, shape of field is input.

e Lattice can provide shape, but uncertain R.

=== Clem profile
0.25 —— Gaussian profile
® Lattice calculation

e Solution: Keep shape fixed, but R ballpark-free.

22



The shoving force

e Energy in field, in condensate and in magnetic flux.

e Let g determine fraction in field, and normalization N is given:

E = Nexp(—p*/2R?)

e Interaction energy calculated for transverse separation d |,
giving a force:

23



Monte Carlo details

e Distance d| calculated in a frame where strings lie in parallel
planes.

e Everything is two-string interactions.
e The shoving action implemented as a parton shower.

e Push propagated along string, and distributed on final state
hadrons.

24



Rope Hadronization

e After shoving, strings (p and q) still overlap.
e Combines into multiplet with effective string tension &.

Effective string tension from the lattice

ko G = — = M'
ko Co(singlet)

25



Rope Hadronization

e After shoving, strings (p and q) still overlap.
e Combines into multiplet with effective string tension &.

Effective string tension from the lattice

kox G = KA M.
Ko Co(singlet)

Easily calculable using SU(3) recursion relations

{pa}®3={p+lq}@{p,q+1}&{p,qg—1}
HoH®..eHeoeos..®Q
| —

All anti-triplets All triplets
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Rope Hadronization

e After shoving, strings (p and q) still overlap.
e Combines into multiplet with effective string tension &.

Effective string tension from the lattice

kox G = KA M.
Ko Co(singlet)

Easily calculable using SU(3) recursion relations

{pa}®3={p+lq}@{p,q+1}&{p,qg—1}
HoH®..eHeoeos..®Q
| —

All anti-triplets All triplets

e Transform to & = Wﬂo and

2N =(p+1)(g+1)(p+q+2)
e /N serves as a state's weight in the random walk. 25



Fragmenting the multiplets

e Highest multiplet = highest string tension.

e Intermediate multiplets = string junctions, carry baryon
number.

e Rope breaks one string at a time, reducing the remaining
tension.

Strangeness enhanced by:

2 2
I
PLEP = €Xp (—W( 3 “)> s B Ko /K

e QCD + geometry extrapolation from LEP.

e Can never do better than LEP description!

26



Rescattering

e Rescattering requires hadron space—time vertices.

e Key difference to existing approaches: Earlier hadronization
T2 fm.

e Momentum-space to space-time breakup vertices through

5 )?.er++)?._p_

string EOM: v; = —~—

e Hadron located between vertices: v/ = YT )it (L Bh)

e Formalism also handles
complex topologies.

e Hadron cross sections
from Regge theory or
data.

e Extensions towards
cosmic cascades coming.

27



Microscopic final state collectivity in summary

e Proposal: Model microscopic dynamics with interacting Lund
strings

e Additional input fixed or inspired by lattice, few tunable
parameters.

28



Microscopic final state collectivity in summary

e Proposal: Model microscopic dynamics with interacting Lund

strings

e Additional input fixed or inspired by lattice, few tunable
parameters.

7~ 0 fm: Strings no transverse extension. No interactions,

7~0.6 fm:

7~1 fm:

7~ 1.4 fm:

7> 1.4 fm:

partons may propagate.

Parton shower ends. Depending on "diluteness”,
strings may shove each other around.

Strings at full transverse extension. Shoving effect
maximal.

Strings will hadronize. Possibly as a colour rope.

Possibility of hadronic rescatterings.
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Shoving results

e The pp ridge (and much more, see 2010.07595).
e Here compared to ALICE: apply cuts and biases as you wish
(even Z tags, see 1901.07447)
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Rope results

e Good description of strangeness enhancement.

e Left pp final calculation, right pp-AA preliminary results
(WiP).
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Did you skip shoving for AA?

e Adding small pushes propagating along the string is difficult!

e Current problem: “secondary” string pieces arising from
origami regions.

e |f only there were no soft gluons around...
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Shoving results PbPb (and 0O0)

e Missing origami regions, realistic initial states (left).
e Toy model configuration (right)

e Both lacking hadronic rescattering, which also plays a role.

Flow coefficient 0,{2} with |Ay] > 1.
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Rescatterings

e Early time hadronization means large effect from rescatterings.
e High multiplicity v well described, no shoving included here.
o Larger effect for PbPb than XeXe.
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Rescattering charm

e Includes additive quark model for charm cross sections.
o Large effect for J/9 (dissociation, flow). Early production.

e Full comparison to data needed.

Average number of J/§ per event
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Summary and future

e Heavy ion physics traditionally different from high energy pp.

e Small system collectivity (LHC) blurred the lines.

e — Pythia a multi-purpose heavy ion generator without QGP.
. Angantyr model extending the MPI picture.

Pluggable nuclear geometries (eg. O0).

. String shoving for flow (not public in AA yet).

Rope hadronization for strangeness (not public in AA yet).

5. Hadronic rescattering machinery.

bl A

e Next step is making them all talk together — a coherent heavy
ion model.

e Interactions welcome, many exciting possibilities for R3, EIC
and cosmics.

Thank you for the invitation!

85



