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Thank you for the invitation! (DALL-E 3)
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Collectivity in small systems: is it still interesting?

• Needs no introduction: more than 10 years old now.

(CMS: arXiv:1009.4122)

• Still most surprising
discovery at LHC !

• Not a high multiplicity
phenomennon!

(ALICE: arXiv:1606.07424)
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The PYTHIA perspective (arXiv:2203.11601)

• General purpose Monte Carlo based on jet universality and
factorization theorem(s) .
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• Complex beasts even without QGP.
• And QGP breaks the fundamental assumptions. 4



Microscopic view on collectivity

• Can PYTHIA save itself, without introducing QGP?

• Answer: Microscopic, string interaction model.

• If this works well, can it also work in heavy ions?

• If yes, where does it leave the QGP?

• Answer: These are very good questions

• Rest of this talk:

1. Microscopic model ingredients: string shoving, colour
reconnection, rope formation, hadronic rescattering.

2. Performance against pp data.
3. Performance against AA data.
4. Distinguishing between string interactions and QGP.
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Fragmentation of a single string (Phys.Rept. 97 (1983) 31-145)

• Non-perturbative fragmentation, Lund strings, κ ≈ 1 GeV/fm.

Flavour by tunnelling

P ∝ exp (−πm
2
⊥

κ
), where m is the quark mass → parameter.

But many strings overlap in pp collisions!
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Shoving: The cartoon picture (arXiv:1710.09725,2010.07595)

• Strings push each other in transverse space.
• Colour-electric fields → classical force.

� Transverse-space geometry.
� Particle production mechanism.
?? String radius and shoving force
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Shape of the field

• Easier analytic approaches, eg. bag model:
κ = πR

2[(Φ/πR2)2/2 + B]
• No consensus on R with field shape as input.

• Lattice can provide shape, but uncertain R.
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• Solution: Keep shape fixed, but R ballpark-free.
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The shoving force

• Energy in field, in condensate and in magnetic flux.

• Let g determine fraction in field, and normalization N is given:

E = N exp(−ρ2/2R2)

• Interaction energy calculated for transverse separation d⊥,
giving a force:

f (d⊥) =
gκd⊥

R2
exp(− d

2
⊥

4R2
)

• Distance calculated in “shoving frame”, resolved as two-string
interactions.

9



String shoving in pp (arXiv:1710.09725,2211.04384,1906.08290,2101.03110)

• Inclusive flow observables well reproduced.
• Add a hard probe trigger, interactions handled.
• In Pythia. Download and play around.
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String shoving in AA (arXiv:1806.10820,2010.07595)

• Starting point: Angantyr, Pythia heavy ion model (ask...).
• Geometry difficult: Parallel frame.
• Gluon-rich environments difficult: String EOMs.
• Time evolution difficult: Parton shower formalism.
• Many pushes difficult: Cache and add to hadrons.
• N

2
scaling difficult: Buy a new computer.
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Toy initial states (arXiv:2010.07595)

• Remove the gluons + elliptic initial geometry.
• Model behaves like hydro for such initial states.
• Work continues to fully generalize and integrate.
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• Better understanding of model.
• Couple with hadronic rescattering non-trivial (ask...) 12
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Should the strings/prehadrons not be melting? (2205.11170)

• Energy density too high, strings must be melting (PHSD,
CGC energy densities, ...)

• At early times, energy primarily in partons .

• Flow signals alone cannot discriminate.

13



Rope Hadronization (arXiv:1412.6259 – explored heavily in 80’s and 90’s!)

• Overlapping strings combine into multiplet with effective
string tension κ̃.

Effective string tension from the lattice

κ ∝ C2 ⇒
κ̃
κ0

=
C2(multiplet)
C2(singlet)

.

Strangeness enhanced by:

ρLEP = exp(−π(m2
s −m

2
u)

κ ) → ρ̃ = ρ
κ0/κ
LEP

• QCD + geometry extrapolation from LEP.

• Can never do better than LEP initial conditions!
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A question for data! (in preparation)

• If string melts, it’s correlations should vanish.

• Special role of ϕ meson in Lund string model.

(Figure credit: David Chinellato)

• Use the ϕ as a trigger, and look for correlations along the
string (rapidity).

• Work in progress with Stefano Cannito and Valentina Zaccolo
(ALICE, Trieste).
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Reveals difference between models (in preparation)

• Case study: EPOS-4 vs. Pythia with strings.
• Reveals differences at both small and large multiplicities.

• Isolate high multiplicity behaviour by double ratio.
• Work in progress with Stefano Cannito and Valentina Zaccolo
(ALICE, Trieste).
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Summary and road ahead

• Small system collectivity as relevant a puzzle as ever.

• Microscopic models for string interactions to solve the puzzle.

• Performance in pp remarkable, better than hydro in several
cases.

• Work ongoing for AA collisions, challenging but encouraging
results.

• Work ongoing for isolating discriminating signals, focus on pp.
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Bonus material

1. The Angantyr model.

2. Some Angantyr results.

3. The PYTHIA hadronic cascade.

4. Some hadronic cascade results.
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Particle production: The Angantyr model (arXiv:1806.10820)

• Emission F (η) per wounded nucleon
→ dN

dη
= ntF (η) + npF (−η).

• F (η) modelled with even gaps in rapidity, as diffraction.

• Tuned to reproduce pp in the nt = np = 1 case.

• No tunable parameters for AA – though some freedom in
choices along the way.

Projectile Target η

dN
dη

target wounded nucleonprojectile wounded nucleon
pp collision

pA collision
AA collision
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Angantyr results

• Reduces to normal Pythia in pp. In pA and AA:
♠ Centrality measures & multiplicities.
♣ Fluctuations more important in pA.
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Angantyr results

• Reduces to normal Pythia in pp. In pA and AA:
♠ Centrality measures & multiplicities.
♣ Fluctuations more important in pA.
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Hadronic Rescattering (arXiv:2103.09665, arXiv:2005.05658, arXiv:1808.04619)

• Pythias own implementation, some difference to others.

• Hadron production vertices from strings: Earlier hadronization
τ ≈ 2 fm.

• Momentum-space to space-time breakup vertices through

string EOM: vi =
x̂
+
i p

++x̂−i p
−

κ

• Hadron located between vertices: v
h
i =

vi+vi+1
2

(+−
ph
2κ
)

• Formalism also handles
complex topologies.

• Hadron cross sections
from Regge theory or
data, AQM for heavy
quarks.
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Hadronic rescattering (arXiv:2002.10236, arXiv:2103.09665)

• Crucial for large systems, very sensitive to system lifetime.
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Toy modelPYTHIA ANGANTYR 

• Not trivial to combine effects!
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Hadronic rescattering and flavour (arXiv:2103.09665)

• Crucial for large systems, very sensitive to system lifetime.

• AQM the best we can do for HF, many interesting prospects.
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