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Introduction

e Everywhere we look, we find heavy ion behavior!
e Monte Carlos for pp physics have had:

1. No space—time structure.
2. No heavy ion collisions.
3. No collective effects.

e And that was a problem!
@ At least do enough for a non-QGP baseline.

\‘) But if it works, how far can we go?



The key di nces between standard approaches

e Standard MC approach: Matrix element, parton shower +
string hadronization.

e Note different time-scales.
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e Initial state geometry with Monte Carlo.
1. From Mueller dipoles to event geometry.
2. Fluctuating cross sections.
3. Towards EIC.

e Matching to a multi-parton interactions.
1. Pythia and the Angantyr model.
2. Fluctuations in parton level geometry.

e From geometry to collectivity.

1. The string shoving model.
2. Shoving and Angantyr.
3. Response to geometry.



Mueller dipole initial states

The aim and the means

A reasonable calculation of initial state geometry.
Fluctuating nucleon—nucleon cross sections.
MC implementation of Mueller dipoles.
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e Projectile and target cascades evolved for each event.
e Formalism in impact parameter and rapidity.

e Single-event spatial structure.



A step back, BFKL, B-JIMWLK and all that...

e Start with Mueller dipole branching probability:
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e Evolve any observable O(y) — O(y + dy) in rapidity:

Oly+ay) =y [ & ks O(rs) © O]+ 0(ra) |1~ ay [ s
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N aiy = [ d°A k3 [O(r13) ® O(r23) — O(n12)]. 6



A powerful formalism!

e Example: S-matrix (eikonal approximation, b-space):

O(n3) ® O(r23) — S(r13)S(r3)

e Changeto T=1-S:
83<;—>: /d273 k3 [(T13) + (T23) — (T12) — (T3 T23)] -

o B-JIMWLK equation, but could be written with other
observables.
e Example: Average dipole coordinate ((z)):

d(z . 1 1
8<;>: /d2r3/<a3 <3Z3 — 6(21 + 22)> .



Monte Carlo implementation

Drawbacks to analytic approach

Involved observables are hard!
Not obvious how to include sub-leading effects.
Not obvious how to treat exclusive final states.

The MC way is a tradeoff: formal precision vs. pragmatism.
Get for free: Rest of the MC infrastructure.

Practically a parton shower-like implementation.

Step 1: Modify splitting kernel with Sudakov:

dP _ Ncas r122 v 2, Neas I’122
27 = 9.2 2,0 P\~ dydr3 7
d-y d r3 27T r13r23 Ymin

Winner-takes-it-all algorithm generates emission up to
maximal rapidity.

Throws away the non-linear term in the cascade.



Colliding dipole chains & unitarity

e Have: Evolved dipole chain 4 la BFKL.
e Dipole cross section in large-N. limit (consistency with
evolution):

1!



Effects beyond leading log

Some details

A dipole has a rapidity y, and a p, related to its size p; h/r.
Thus its lightcone momenta is p+ = p; exp(Ly).

e Energy-momentum conservation from bounded p_ translate
to upper bound on dipole sizes.

e Running as: Easily included per-splitting.
e Non-eikonal effects: recoil distributed on emitters in py,p,,
and thus also y.

e Confinement: Explicit confinement scale (or fictitious gluon
mass) entering evolution and collision.

e Unitarized scattering amplitude resums 1/N2 terms in
interaction, equivalent to multi-pomeron exchanges in
interaction frame.
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Example: confinement — hot-spots

e MC makes it easy to switch physics effects on and off.

e More activity around end-points: Hot-spots!

e Initial triangle by hand. Less important at high energies, but
deserves more thought.

Unconfined Confined
0. 0
0.08 x 0.08
4 ¥
A
~ 006 ~ 006
S Hx = X
004 - 004 -

0.

%
x ol
ok PR
0.02 ﬁyﬂ x% 0.02 ﬂj %
1 p 5 T o 0. o 5

050 075 100 125 150 L7 200 050 075 100 125 150 175 200
nfr 1/
(a) (b)
Unconfined Confined
0 0
x
0.08 0.08
~ x — *
= 0.06 20061
5 & S x
£ e £
S 001] K < 0.04 ¢
xx ;‘g@xx
0.02 0021 5
x
0.0~ 000
00 05 10 5 20 00 05 10 15 20 11



Example: confinement — hot-spots

e MC makes it easy to switch physics effects on and off.

e More activity around end-points: Hot-spots!

e Initial triangle by hand. Less important at high energies, but
deserves more thought.
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e Dynamically generated!
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Good—Walker & cross sections

—,

e Cross sections from T(b) with normalizable particle wave
functions:

-,

- 2/d25r(5) _ 2/d25 (T(B)) put
va= [ EFG) = [ &6 (TE,

. dog [ b /2 (T(b))p
Bel—atlog<dt> =

=0 J @b (T(b))p,e
e Or with photon wave function:

1 Renees 27
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Model parameters

e This means that all parameters (4) can be tuned to cross
sections
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e Could constrain better in ep with eg. vector meson production.
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Model parameters Il

e Same parameters should describe pp, adds more data to the

tuning.
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e Not as good as dedicated (Regge-based) models.
e Accuracy not the point, control of physics features is! 1



Cross section colour fluctuations

e Cross section fluctuates event by event: important for pA, v*A
and less AA.

e Projectile remains frozen through the passage of the nucleus.

e Consider fixed state (k) projectile scattered on single target
nucleon:

r (B) = (ps|vy) = <wk,wt|f(5)|wk,wt> =
Z‘Ct‘ Ttk ¢k7¢t|¢ka¢t> =

(c)® D leel Te(b) = (Tew(b))e

e And the relevant amplitude becomes <T£”LV’)(En;)>t
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Fluctuating nucleon-nucleon cross sections

e Let nucleons collide with total cross section 2(T)p ¢
e Inserting frozen projectile recovers total cross section.

e Consider instead inelastic collisions only (color exchange,
particle production):

doinel ™ 72

d2b

e Frozen projectile will not recover original expression, but
requre target average first.

do,, . . . -

2p 20 Tk(b)e — (TZ(B))p = 2(T(b))e,p — ((T(D))2)p

e Increases fluctuations! But pp can be parametrized.
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EIC adds more complications

e For v*A collisions the trick can be repeated.

e But photon wave function collapse to previous result at first

hit.
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Drastic for number of wounded nucleons

e More multi-hit events, meaning more background.

e Clearly non-negligible, lesson already learned in p-Pb at LHC.
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The story so far

Mueller dipole MC for fluctuations and impact parameter
space.

Drastic consequenses for wounded nucleons.

Must be coupled to particle production.

e ...and to initial spatial parton density.

19



Detour: MPIs in PYTHIAS pp

e Several partons taken from the
PDF.

e Hard subcollisions with 2 — 2 ME:

Figure T. Sjostrand

dooy  o2(p?) . o2(pt + ply)
dpt Pt (P + Pio)?

e Momentum conservation and PDF scaling.
e Ordered emissions: pi1 > pi2 > pia > ... from:

1 dooyo PLi-1 1 do ,
P(pL = p1i) o dpr &P /p o ddl P

e Picture blurred by CR, but holds in general. 20



Angantyr — the Pythia heavy ion model

e Pythia MPI model extended to heavy ions since v. 8.235.
1. Glauber geometry with Gribov colour fluctuations.
2. Attention to diffractive excitation & forward production.
3. Hadronize with Lund strings.

Glauber—Gribov | _[Multiparton interactions Parton shower String Hadronization
colour fiuctuations | | Proton Potneron PDFs | Colour reconncetion Ropes/Shoving
z i =
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Particle production: Wounded nucleons

e Simple model by Biatas and Czyz.
e Wounded nucleons contribute equally to multiplicity in 7.
e Originally: Emission function F(n) fitted to data.

dN/dn

dN

dn F(n) (single wounded nucleon

e Angantyr: No fitting to HI data, but include model for
emission function.

e Model fitted to reproduce pp case, high /s, can be retuned
down to 10 GeV.

22



Particle production: Wounded nucleons

e Simple model by Biatas and Czyz.
e Wounded nucleons contribute equally to multiplicity in 7.
e Originally: Emission function F(n) fitted to data.
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e Angantyr: No fitting to HI data, but include model for
emission function.

e Model fitted to reproduce pp case, high /s, can be retuned

down to 10 GeV. e



Particle production: Wounded nucleons

e Simple model by Biatas and Czyz.
e Wounded nucleons contribute equally to multiplicity in 7.
e Originally: Emission function F(n) fitted to data.

dN
ay ~ WiF+ F(=n) (PA)

e Angantyr: No fitting to HI data, but include model for
emission function.
e Model fitted to reproduce pp case, high /s, can be retuned

down to 10 GeV. -



Particle production: Wounded nucleons

e Simple model by Biatas and Czyz.
e Wounded nucleons contribute equally to multiplicity in 7.
e Originally: Emission function F(n) fitted to data.

dN/dn

aN
d_T] = wiF(n) + wpF(—n) (AA)

e Angantyr: No fitting to HI data, but include model for
emission function.
e Model fitted to reproduce pp case, high /s, can be retuned

down to 10 GeV. -



Some results - pPb

e Centrality measures are delicate, but well reproduced.

e So is charged multiplicity.

(a) Centrality-dependent 7 distribution, pPb, /Sy = 5 TeV.
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Direct dipole fluctuations

e Comparison between direct calculation (slow), and
parametrized (fast).
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Basic quantities in AA

e Reduces to normal Pythia in pp. In pA in AA:

1. Good reproduction of centrality measure.
2. Particle density at mid—rapidity.

Sum Ef” distribution, Pb-Pb /sy = 2.76 TeV
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(a) Centrality dependent 7 distribution PbPb, \/Syy = 5.02 TeV

— Pythia8/Angantyr
—s— ALICE PbPb \/Syy = 5.02 TeV

e Geometric quantities from matching to dipole calculations

coming up.
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Parton vertices

e Parton vertices assigned according to dipole calculation.

e Cannot be done from first principles!

Priniciples of vertex assignments

¢ Dipole cascade branches go on-shell iff colliding with another.

¢ Partonic sub-collisions ordered in importance, i.e. contribution
to cross section.

¢ Further emissions by parton shower smears and recoils with a
Gaussian.

e Default model, for comparison, is proton mass distribution =
2D Gaussian.
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Eccentricities

e Initial state anisotropy quantified:

_ V(P cos(ng))? + (r?sin(ng))>

n (r?)

e ...and the usual higher moments.
e Beware infrared safety! — p| /(p1 + P min)
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Could differences be measured?

e Differences visible, but p-Pb might be the best!
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e NSC correlated flow coefficients, and scale out the magnitude.

e For p-Pb: Only negative in dipole picture.
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Adding transport to final state

e The left side has now been established.
e Emphasis on colour fluctuations, forward production and

partonic vertices.
e Rest of the talk: Transporting anisotropy to final state.
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(Figure: D. D. Chinellato)
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Microscopic final state collectivity

e Proposal: Model microscopic dynamics with interacting Lund
strings

e Additional input fixed or inspired by lattice, few tunable
parameters.

30



Microscopic final state collectivity

e Proposal: Model microscopic dynamics with interacting Lund
strings

e Additional input fixed or inspired by lattice, few tunable
parameters.

7~ 0 fm: Strings no transverse extension. No interactions,
partons may propagate.

7~ 0.6 fm: Parton shower ends. Depending on "diluteness”,
strings may shove each other around.

7~ 1 fm: Strings at full transverse extension. Shoving effect
maximal.

7~ 2 fm: Strings will hadronize. Possibly as a colour rope.

7 > 2 fm: Possibility of hadronic rescatterings.
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The cartoon picture

e Strings push each other in transverse space.
e Colour-electric fields — classical force.
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s Transverse-space geometry.
s Particle production mechanism.
7?7 String radius and shoving force
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MIT bag model, dual superconductor or lattice?

e Easier analytic approaches, eg. bag model:
k= TR?[(®/7R?)?/2 + B]

e Bad R 1.7 and dual sc. 0.95 respectively, shape of field is
input.

e Lattice can provide shape, but uncertain R.

=== Clem profile
0.25 —— Gaussian profile
# Lattice calculation

e Solution: Keep shape fixed, but R ballpark-free.
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The shoving force

e Energy in field, in condensate and in magnetic flux.

e Let g determine fraction in field, and normalization N is given:

E = Nexp(—p*/2R?)

e Interaction energy calculated for transverse separation d |,
giving a force:
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Monte Carlo details

e Distance d| calculated in a frame where strings lie in parallel
planes.

e Everything is two-string interactions.
e The shoving action implemented as a parton shower (again!)

e Push propagated along string, and distributed on final state
hadrons.
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Directly: varying results

e Results are ok in pp, but off in AA.
e This is with the full initial state machinery = many things can

go wrong.
Flow coefficient v,{2} with |Ay| > 1.
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Simpler toy initial state

e Problematic: many soft gluons in final state.
e Corrections to string hadronization, saturation scale...

e Set up toy system of straight strings, study response to
geometry.

1 b=5fmand p=5fm2 b=7fmand p=5fm2 b=10fm and p=5 fm~2

y [fm]
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-10 T T T T T T T T T
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Fixed density close to reality

e Choose array of fixed densities, insert long strings, and

(1) (event plane)

calculate v,:

1
Vp = (cos(n(¢p — V,)), ¥V, = —arctan

o bl
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e Closer to data is nice, gives a path forward.
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Scaling with initial eccentricity

Critical density? Critical for what?

Eccentricity vs. v, all centralities p = 2fm ™2

03 (event plane)
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Better: Rescaled variables

dex = 222 and ovp = Y2~ \V2) {v2)

(€2) (v2)

p=12fm=2 p =20fm~2 p =30fm=2

— v — v — v
—_— — & — &

H
<

P(6€3), P(6v2)

H
N

62, 6v2 682, 6v2 6€3, 6V

Scaling like hydro for large densities.

...but more fluctuations for low densities!
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Summary: Dipoles and string interactions

e Mueller dipoles for geometry and IS fluctuations.

e Mapping to Pythia/Angantyr for particle production.

e Angantyr = p-A and AA final states, eA are coming.

e Huge opportinity: Control geometry and density at EIC.

e String shoving: interactions to generate transverse pressure.
e Interface to Angantyr still not perfect.

e Behaves like hydro in simple, high-density systems.

Thank you for the invitation!
Exciting times are still ahead!
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