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1 Introduction

The objective of this exercise is to teach you the basics of how to use the Pythia 8.1
event generator to study multi-jet backgrounds. As you become more familiar you will
better understand the tools at your disposal, and can develop your own style to use them.
Within this first exercise it is not possible to describe the physics models used in the
program; for this we refer to the Pythia 8.1 brief introduction [1], to the full Pythia 6.4
physics description [2] (and all the further references found in them), and [5] concerning
matrix element merging.

Pythia 8 is, by today’s standards, a small package. As such, it should be noted that
Pythia8 includes a selection 2 → 1 and 2 → 2 processes, as well as a limited variety of
2 → 3 processes, but does not contain a general matrix element generator. New processes,
particularly for two or more additional jets, can be made available in form of Les Houches
Event (LHE) files. This means that to estimate backgrounds with many jets, you can use
a matrix element generator like e.g. Madgraph/Madevent to improve the Pythia8
description of well-separated jets [5].

2 Getting started: Installing Pythia 8

If you would like to install Pythia 8 on your private machine, and you have a C++
compiler, here is how to install the latest Pythia 8 version on a Linux/Unix/MacOSX
system as a standalone package.

While Pythia can be run standalone, it can also be interfaced with a set of other libraries.
One example is HepMC, which is the standard format used by experimentalists to store
generated events. Since the the location of external libraries is naturally installation-
dependent, it is not possible to give a fool-proof linking procedure, but some hints are
given below.

1. In a browser, go to

http://www.thep.lu.se/∼torbjorn/Pythia.html
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2. Download the (current) program package

pythia81xx.tgz

to a directory of your choice (e.g. by right-clicking on the link).

3. In a terminal window, cd to where pythia81xx.tgz was downloaded, and type

tar xvfz pythia81xx.tgz

This will create a new (sub)directory pythia81xx where all the Pythia source files
are now ready and unpacked.

4. Move to this directory (cd pythia81xx). If you are only interested in directly
producing plots from Pythia event records, you can directly go to the next step.
If you want to produce and store HepMC event output, configure the program in
preparation for the compilation by typing

./configure --with-hepmc=path

where the directory-tree path would depend on your local HepMC installation.
Should configure not recognise the version number you can supply that with an
optional argument, like

./configure --with-hepmc=path --with-hepmcversion=2.04.01

5. Do a make. This will take 2–3 minutes (computer-dependent). The Pythia 8
libraries are now compiled and ready for physics.

6. For test runs, cd to the examples/ subdirectory. An ls reveals a list of programs,
mainNN, with NN from 01 through 30. These example programs each illustrate an
aspect of Pythia 8. For a list of what they do, see the README file in the same
directory or look at the online documentation.
Initially only use one or two of them to check that the installation works. Once you
have worked your way though the introductory exercises in the next sections you
can return and study the programs and their output in more detail.
If you want to produce HepMC output, do either of

source config.csh

source config.sh

the former when you use the csh or tcsh shells, otherwise the latter. (Use echo

$SHELL if uncertain.). If you are not interested in HepMC, this step can be skipped.
To execute one of the test programs, do

make mainNN

./mainNN.exe

The output is now just written to the terminal, stdout. To save the output to a
file instead, do ./mainNN.exe > mainNN.out, after which you can study the test
output at leisure by opening mainNN.out. See Appendix A for an explanation of
the event record that is listed in several of the runs.

7. If you open the file
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pythia81xx/htmldoc/Welcome.html

you will gain access to the online manual, where all available methods and param-
eters are described. Use the left-column index to navigate among the topics, which
are then displayed in the larger right-hand field.

To produce a matrix-element improved prediction with Pythia 8, you will also need to
supply Les Houches Event (LHE) files as input. You will have to generate these yourself,
with your own cuts, and your preferred matrix element generator. Pythia 8 comes with
three very short LHE files containing 100 events each. You can use these as input for the
programs you will develop in this tutorial. If your application requires more events, for
the sake of this tutorial, you can find sample LHE files under

http://home.thep.lu.se/∼prestel/LHE Files/

The names of the files reflect the hard process:

w2emveb: pp → W− → e−ν̄e+ jets
w2epve: pp → W+ → e+νe+ jets
z2epem: pp → Z → e+e−+ jets
z2veveb: pp → Z → νeν̄e+ jets

and the number immediately before the .lhe suffix gives the number of additional partons
in the LHE file. These files come with no guarantees and should only be used for this
tutorial.

To download all sample LHE files to the examples directory, go to

/path/to/Pythia/pythia8160/examples

and (under Linux) execute

wget -r -np -nd --reject "index*" http://home.thep.lu.se/∼prestel/LHE Files/

in your terminal.

3 Simple LHC Events

When using Pythia, you are expected to write the main program yourself, for maximal
flexibility and power. Several examples of such main programs are included with the code,
to illustrate common tasks and help getting started. You will also see how the parameters
of a run can be read in from a file, so that the main program can be kept fixed. Many of
the provided main programs therefore allow you to create executables that can be used
for different physics studies without recompilation, but potentially at the cost of some
flexibility.

The focus of the next sessions will be on extracting signals from Standard Model back-
grounds. So, to get to know the Pythia 8 syntax, we will generate one pp → W+ jets
event at the LHC, using Pythia standalone to produce all jets.

Open a new file mymain.cc in the examples subdirectory with a text editor, e.g. Emacs.
Then type the following lines (here with explanatory comments added):
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// Headers and Namespaces.

#include "Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main() { // Begin main program.

// Set up generation.

// Declare Pythia object

Pythia pythia;

// Initialise pythia on LHE file for qqbar-> W

pythia.init("./w+_production_lhc_0.lhe");

// Generate event(s).

// Generate an(other) event. Fill event record.

pythia.next();

// End main program with error-free return.

return 0;

}

Next you need to edit the Makefile (the one in the examples subdirectory) so it knows
what to do with mymain.cc. The line

# Create an executable for one of the normal test programs

main00 main01 main02 main03 ... main09 main10 main10 \

together with the following three lines enumerate the main programs that do not need
any external libraries. Edit the last of these lines to include also mymain:

main40 mymain: \

Now you can compile and run your main program by typing

make mymain

./mymain.exe > mymain.out

You can then study mymain.out, especially the example of an event record. At this point
you need to turn to Appendix A for a brief overview of the information stored in the event
record.

An important part of the event record is that many copies of the same particle may
exist, but only those with a positive status code are still present in the final state. For
illustration, consider a quark q produced in the first initial state splitting of the pp → W
hard interaction. Initially, this parton will have a positive status code. When a shower
branching q → qg occurs later, the new q and g are added at the bottom of the then-
current event record, but the old q is not removed. It is marked as decayed, however, by
negating its status code. At any stage of the shower there is thus only one “current” copy
of this quark. When you understand the basic principles, see if you can find several copies
of the a parton produced in the hard interaction, and check the status codes to figure
out why each new copy has been added. Also note how the mother/daughter indices tie
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together the various copies.

4 A first realistic analysis

We will now gradually expand the skeleton mymain program from above, towards what
would be needed for a more realistic analysis setup.

• Generally, we wish to generate more than one event. To do this, introduce a loop
around pythia.next() and pythia.event.list(), so the code now reads

for (int iEvent = 0; iEvent < 5; ++iEvent) {
pythia.next();

pythia.event.list();

}

Hereafter, we will call this the event loop. The program will now generate and
print 5 events; each call to pythia.next() resets the event record and fills it with a
new event. Once you start generating many events, it might be convenient to remove
the pythia.event.list() call. By default, Pythia 8 will still print a record of
the very first event.

• To obtain statistics on the number of events generated of the different kinds, and
the estimated cross sections, add

pythia.statistics();

just before the end of the program.

• During the run you may receive problem messages. These come in three kinds:

– a warning is a minor problem that is automatically fixed by the program, at
least approximately;

– an error is a bigger problem, that is normally still automatically fixed by the
program, by backing up and trying again;

– an abort is such a major problem that the current event could not be completed;
in such a rare case pythia.next() is false and the event should be skipped.

Thus the user need only be on the lookout for aborts. During event generation,
a problem message is printed only the first time it occurs. The above-mentioned
pythia.statistics() will then tell you how many times each problem was encoun-
tered over the entire run.

• Looking at the pythia.event.list() listing for a few events at the beginning
of each run is useful to make sure you are generating the right kind of events, at
the right energies, etc. For real analyses, however, you need automated access to
the event record. The Pythia event record provides many utilities to make this
as simple and efficient as possible. To access all the particles in the event record,
insert the following loop after pythia.next() (but fully enclosed by the event
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loop)

for (int i = 0; i < pythia.event.size(); ++i)

cout << "i = " << i << ", id = " << pythia.event[i].id() <<

endl;

which we will call the particle loop. Inside this loop, you can access the properties
of each particle pythia.event[i]. For instance, the method id() returns the
PDG identity code of a particle (see Appendix A). The cout statement, therefore,
will give a list of the PDG code of every particle in the event record. All methods
that give particle properties can be found following the “Particle properties” link
in the section “Study output” in the left-hand menu in the manual, or in the file
/path/to//Pythia/pythia8160/htmldoc/ParticleProperties.html.

• If you are e.g. only interested in final state partons, the isFinal() and isParton()

methods can be applied to the event record entry:

for (int i = 0; i < pythia.event.size(); ++i)

if(pythia.event[i].isFinal() && pythia.event[i].isParton())

cout << "i = " << i << ", id = " <<

pythia.event[i].id() << endl;

This will only print the PDG code of final state gluons, (anti)quarks and diquarks.

• In addition to the particle properties in the event listing, there are also methods
that return many derived quantities for a particle, such as transverse momentum
(pythia.event[i].pT()). Use this method to find the transverse momentum of
the W+-boson after the evolution, i.e. the last W-boson in the event record (which
is of course cheating a bit, since in an experimental environment, it is a lot more
complicated to isolate W-candidates).

• We now want to generate more events, say 1000, to study the shape the W-pT -
spectrum. Inside Pythia is a very simple histogramming class, that can be used
for rapid check/debug purposes. To book the histograms, insert before the event

loop

Hist pTW("pT of W-boson", 100, 0., 100.);

where the last three arguments are the number of bins, the lower edge and the
upper edge of the histogram, respectively. As an exercise, fill this histogram for
each event with the transverse momentum of the W-boson after the evolution. For
this, initialise a variable before the particle loop, and find the pT inside a particle

loop:

double pT = 0.;

for (int i = pythia.event.size(); i > 0; --i)

if( pythia.event[i].idAbs() == 24 ) {
pT = pythia.event[i].pT();

break;

}
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Then, before the end of the event loop, insert

pTW.fill(pT);

to fill the histogram. To arrive at a correctly normalised histogram, include

pTW *= pythia.info.sigmaGen() / pythia.info.nAccepted();

after the event loop and the pythia.statistics() call. In this way, the sum of
the heights of all histogram bins will give the correct cross section, irrespectively of
how many events you requested1. Finally, to print the histograms to the terminal,
add a line like

cout << pTW;

For comparison with merged results, it might be useful to save the output of this
run.

5 A first merged prediction

The main program we have constructed in the previous section still has a drawback:
All radiation will be produced by Pythia 8. This will give reliable results for soft and
collinear configurations, but less so for multiple hard, well-separated jets. To model both
soft/collinear and well-separated jets at the same time, we need to include matrix element
calculations – which describe the production of multiple hard jets nicely – into the jet
evolution of the parton shower. This can be done by supplying LHE files to Pythia 8,
which will then internally be processed to perform a smooth transition from n-jet to
n+ 1-jet events [5]. Several main programs illustrating matrix element + parton shower
merging (MEPS) are included in the Pythia 8 distribution.

Take as an example one-jet merging in W+jets. In this case, we want to take a ”hard” jet
from the pp → Wj matrix element (ME), while soft jets should be modelled by emissions
off pp → W states, generated by Pythia.

We will now adapt the mymain program from above, towards what would be needed for
merged predictions.

• First, to produce the two samples mentioned above, we need to run Pythia both
with pp → Wj, and with pp → W input. You can use the same Pythia object to
run both samples consecutively:

Hist pTW0("pT of W-boson, zero-jet ME", 100, 0., 100.);

pythia.init("./w+ production lhc 0.lhe");

...

event loop, particle loop, histogramming for 0-jet sample, normalisation
of histograms, etc.

...

1Pythia cross sections are given in units of mb. If you instead prefer e.g. pb then multiply by 1e9.
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Hist pTW1("pT of W-boson, one-jet ME", 100, 0., 100.);

pythia.init("./w+ production lhc 1.lhe");

...

event loop, particle loop, histogramming for 1-jet sample, normalisation
of histograms, etc.

...

• In the following, it is possible that you try to read more events than are available.
This can e.g. happen when vetoing events internally to generate Sudakov form fac-
tors. To make sure that the normalisation introduced in the previous section is still
valid, change the pythia.next() statement to

if( !pythia.next() ) {
if( pythia.info.atEndOfFile() ) break;

else continue;

}

so that you exit the event loop one you have reached the end of the LHE file. Once
you request the generation of a number of events comparable to the number stored
in the LHE files2, you need to implement these commands.

• So far, your adaptions mean that Pythia 8 will shower the pp → W process and
the pp → Wj process, without any merging. For a merged prediction, you need to
include

pythia.readString("Merging:doKTMerging = on");

at the beginning of the program. This will enable the merging procedure, with the
merging scale defined as k⊥-separation of jets in the k⊥-algorithm. This definition
fixes what we mean when we talk about “hard” and “soft” jets:

Hard jets: min{k⊥(Hard jet)} > tMS

Soft jets: min{k⊥(Soft jet)} < tMS

There is of course a plethora of hardness criteria. For this reason, Pythia 8 allows
you to define your very own merging scale (see below).

• When you have fixed the merging scale definition, you need to pick a merging scale
value by adding

pythia.settings.readString("Merging:TMS = 20.");

at the beginning of the program. Note that tMS has dimension GeV. Here, we have
chosen a value of tMS = 20 GeV since the example LHE files have been generated
with this cut – no physics is tied to this particular value3.

• Then, decide on the maximal number of additional jets available from ME calcula-

2The LHE files that can be downloaded from http://home.thep.lu.se/∼prestel/LHE Files/ con-
tain 100 000 events for each jet multiplicity.

3In fact, co-varying tMS in the matrix element calculation and the merging algorithm, and analysing
differences in the combined result, gives the classical error estimate for MEPS methods.
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tion, and the hard process, by including

pythia.settings.readString("Merging:nJetMax = 1");

pythia.settings.readString("Merging:Process = pp>e+ve");

at the beginning of the program.

• You have almost generated a merged prediction. Being pragmatic, a merged calcula-
tion is only a sophisticated reweighting procedure, which will add effects of Sudakov
resummation, and momentum-scale running of αs and parton distributions, to the
ME calculation. This means that each event, after the merging procedure, comes
with a multiplicative weight to include these effects. The weight can be accessed
by calling the function pythia.info.mergingWeight(). You will have to fill his-
tograms with this weight, by e.g. changing

pTW0.fill(pT);

to

pTW0.fill(pT,pythia.info.mergingWeight());

You can convince yourself that the variation of this weight is moderate.

• If the program is run now, you will have generated the two necessary samples for
one-jet merging. You only need to add these predictions to arrive at the merged
result4. To add the histograms, include

Hist pTWSum("pT of W-boson, merged prediction", 100, 0., 100.);

pTWSum = pTW0 + pTW1;

cout << pTWSum;

after you have filled and normalised pTW0 and pTW1. With the histogram pTWSum,
you have now produced a merged prediction for the transverse momentum of the
W-boson.

6 Merging with two jets

The Pythia 8 distribution is shipped with a three LHE files
(examples/w+ production *) with a very small number of events for W++ ≤ 2
jets. These files are regularised in k⊥, so that by changing

pythia.settings.readString("Merging:nJetMax = 1");

to

pythia.settings.readString("Merging:nJetMax = 2");

you can perform a merging for up to two additional hard jets. Of course, that means that
you now need to generate events from three LHE files, histogram all three samples, and
at the end, add three instead of two contributions. Due to the tiny number of events,

4This will not double-count contributions: The removal of double counting exactly what merging
procedures are intended for.
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this does not allow for a reasonable analysis, but gives a hint how easily your program
can be generalised to multi-jet merging.

7 Input Files

With the mymain.cc structure developed above it is necessary to recompile the main
program for each minor change, e.g. if you want to rerun with more statistics. This is
not time-consuming for a simple standalone run, but may become so for more realistic
applications. Therefore, parameters can be put in special input “card” files that are read
by the main program.

We will now create such a file, with the same settings used in the mymain example program.
Open a new file, mymain.cmnd, and input the following

! W + jet merging at the LHC

! Merging scale definition used to regularise ME

Merging:doKTMerging = on

! Merging scale value (= cut value in ME)

Merging:TMS = 20

! Number of additional jets available from ME

Merging:nJetMax = 1

! Process to be merged

Merging:Process = pp>e+ve

The mymain.cmnd file can contain one command per line, of the type

variable = value

All variable names are case-insensitive (the mixing of cases has been chosen purely to
improve readability) and non-alphanumeric characters (such as !, # or $) will be inter-
preted as the start of a comment. All valid variables are listed in the online manual (see
Section 2, point 6, above). Cut-and-paste of variable names can be used to avoid spelling
mistakes.

The final step is to modify our program to use this input file. The name of this input file
can be hardcoded in the main program, but for more flexibility, it can also be provided
as a command-line argument. To do this, replace the

int main() {

line by

int main(int argc, char* argv[]) {

and replace all pythia.readString(...) commands with the single command

pythia.readFile(argv[1]);

after the declaration of the pythia object. The executable mymain.exe is then run with
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a command line like

./mymain.exe mymain.cmnd > mymain.out

and should give the same output as before.

In addition to all the internal Pythia variables there exist a few defined in the database
but not actually used. These are intended to be useful in the main program, and thus
begin with Main:. The most basic of those is Main:numberOfEvents, which you can use
to specify how many events you want to generate. To make this have any effect, you need
to read it in the main program, after the pythia.readFile(...) command, by a line
like

int nEvent = pythia.mode("Main:numberOfEvents");

and set up the event loop like

for (int iEvent = 0; iEvent < nEvent; ++iEvent) {

The online manual also exists in an interactive variant, where you semi-automatically can
construct a file with all the command lines you wish to have. This requires that somebody
installs the pythia81xx/phpdoc directory in a webserver. If you lack a local installation
you can use the one at

http://home.thep.lu.se/∼torbjorn/php81xx/Welcome.php

This is not a commercial-quality product, however, and requires some user discipline. Full
instructions are provided on the “Save Settings” page.

8 Changing Default Settings

You are now free to play with further options in the input file (or use the
pythia.readString method directly in your code), and make changes such as:

• Tune:pp = 5 (or other values between 1 and 7)
Different combined tunes, in particular to radiation and multiple interactions pa-
rameters. In part this reflects that no generator is perfect, and also not all data
is perfect, so different emphasis will result in different optima. Currently, the de-
fault tune for LHC is Tune 4C, (which can also be explicityly set by Tune:pp = 5).
What happens if you switch to Tune A2, which is a recent tune that can be used
by putting Tune:pp = 7?

• SpaceShower:rapidityOrder = off

In Tune 4C, the initial state radiation is ordered both in decreasing p⊥,evol (the
Pythia evolution p⊥) and in decreasing rapidity. This switch allows to remove the
enforced rapidity ordering. How does this affect the MEPS predictions?

The philosophy of Pythia is to make every parameter available to the user. A com-
plete list of changeable settings can be found in the online manual. Have a look at the
switches related to MEPS merging. As additional challenge, think about which switches
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are dangerous, i.e. will maximally corrupt your predictions. Can you isolate a singularly
bad setting? Why does the prediction deteriorate with the changes?

8.1 Switching On or Off Simulation Steps

In the same way, you can switch off parts of the simulation, e.g.

• PartonLevel:FSR = off

switch off final-state radiation.

• PartonLevel:ISR = off

switch off initial-state radiation.

• PartonLevel:MPI = off

switch off multiple interactions.

For debugging your code for instance, it might be reasonable to switch off multiple inter-
actions, so that you can produce plots more quickly.

9 Additional challenges

If you have finished these challenges, you should take the opportunity to try a few other
processes or options. Below are given some examples, but feel free to pick something else
that you would be more interested in. Don’t hesitate to contact us [6].

9.1 Changing the Merging Scale Definition

If you are a bit more ambitious, or you would like to use Pythia’s merging facilities in
the future, it might be nice to know how you communicate your favourite merging scale
definition to Pythia. This involves only a little more work, and would be useful if e.g.
you already have LHE files that you would like to use with Pythia.

The merging procedure can be influenced with methods of the class
Pythia::MergingHooks. The philosophy here is close to the one of Pythia::UserHooks:
Like Pythia::UserHooks allows the user to influence the event generation at different
stages in the evolution, so does Pythia::MergingHooks allow the user to intervene inside
the merging.

The starting point is to tell Pythia that you want more control by setting

Merging:doUserMerging = on

instead of setting Merging:doKTMerging = on. Then you need to derive your own
Pythia::MergingHooks object, by adding e.g.

// Class for interaction with the merging
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class MyMergingHooks : public MergingHooks {

public:

// Default constructor

MyMergingHooks() {};

// Default destructor

~MyMergingHooks() {};

// User defined functional form of the merging scale

virtual double tmsDefinition( const Event& event);

};

between the using namespace Pythia8; and int main() statements.

As an example, let us consider minimal kinematical pT as a merging scale, and a matrix
element cut of pT,min = 20 GeV. Then, your merging scale definition could be included
by writing

// Definition of the merging scale

double MyMergingHooks::tmsDefinition( const Event& event){

// Declare overall veto

bool doVeto = false;

// Declare cut used in matrix element

double pTjmin = 20.;

// Declare minimum value

double minPT = 8000.;

// Check matrix element cuts

for( int i=0; i < event.size(); ++i){

if( event[i].isFinal() && event[i].isParton() ) {

// Save pT value

minPT = min(minPT,event[i].pT());

}

}

// Check if all partons are above the merging scale

if(minPT > pTjmin) doVeto = true;

// If event is above merging scale, veto

if(doVeto) return 1.;

// Else, do nothing

return -1.;

}

after the MyMergingHooks declaration, and setting

Merging:TMS = 0

as input for Pythia 8. Note the convention that for a state produced by the matrix
element generator, the merging scale definition should always give a value larger than the
cut Merging:TMS.

Now, after you have chosen a definition, construct an object and tell Pythia about the
existence of your definition by including
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MergingHooks* myMergingHooks = new MyMergingHooks();

pythia.setMergingHooksPtr( myMergingHooks );

after the declaration of the pythia object.

Once you have decided on a tmsDefinition, and communicated myMergingHooks to
Pythia, your definition will take precedence over the default choice whenever the merging
scale definition is invoked internally.

In this example, kinematical pT would have been used as merging scale. Clearly, this will
not be enough to regularise multi-jet matrix elements. Finite MEs could e.g. be achieved
by applying a combined ∆Rij, pT,i and mij cut on all combinations of (light) jets i and
j. This cut is then a potential candidate for a user-defined merging scale.

9.2 Merging with more jets, and user-defined merging scale

So far, you have learned how to set up a merged prediction with one additional hard jet.
For most background studies however, it would be prudent to allow for a larger number
of well-separated jets. In the installation on your virtual machine, we have included LHE
files for W+ ≤ 4 jets and for Z+ ≤ 4 jets5. These files have been regularised by requiring
the cuts

∆Rij = 0.1 (1)

pT,i = 20 GeV (2)

mij = 20 GeV (3)

Define this combined cut as the merging scale, i.e. classify an event as “inside the
matrix element region” if all (combinations of) jets pass all three cuts, and as “in-
side the parton shower region” otherwise. For this, you will need to derive a
myMergingHooks::tmsDefinition function.

After this, you can expand mymain to two-, three-, or four-jet merging by reusing the
pythia object. Some inspiration on how to do reuse the pythia object within a loop over
jet multiplicities can be taken from the main84.cc sample program.

Once you have done this, it might be nice to have a look at

• The W-boson pT again. Does it change? If it does, can you explain why?

• The k⊥ of jets. For this, you need to define jets with a jet algorithm first. In
main84.cc, you will find a function (pTfirstJet) using fastjet to define jets.
Can you use this to find the k⊥-separation between e.g. the hardest and second
hardest jet? How does this change when including additional jets?

5During the course of the tutorial, we will inform you where in the local file system to find the LHE
files.
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• Changing the default choices in the merging procedure6. For example, check
Merging:unorderedScalePrescrip. How are observables influenced by your
choices?

• Define jets with a jet algorithm, by e.g. using the Pythia::Slowjet class. How
does the ∆Rij separation between jets change when including additioal jets?

9.3 Writing HepMC output for Matrix-Element-merged predic-

tions

Finally, we can move from just looking at plots to analysing complete events. We will use
the HepMC event-record format for this. HepMC events can also be used as input for
detector simulations leading up to a full-fledged experimental analysis.

If you want to want to link your own installation of Pythia 8 to HepMC, please consult
Section 2, Steps 4ff. In the following, assume that you have linked to a running installation
of HepMC. Then, if you want to include HepMC-event output in your main program,
start with the following:

1. Include the HepMC libraries in your main program by adding the lines

#include "HepMCInterface.h"

#include "HepMC/GenEvent.h"

#include "HepMC/IO GenEvent.h"

after the #include "Pythia.h" statement.

2. Define an object converting the Pythia event to HepMC, and a file where the
HepMC events will be stored by adding the lines

HepMC::I Pythia8 ToHepMC;

HepMC::IO GenEvent ascii io(filename, std::ios::out);

before the event loop.

3. Inside the event loop, create a HepMC event for each event:

HepMC::GenEvent* hepmcevt = new HepMC::GenEvent();

then convert the Pythia event to HepMC and write in to the file

ToHepMC.fill next event( pythia, hepmcevt );

ascii io << hepmcevt;

delete hepmcevt;

It might be good to know that the files main41.cc and main42.cc are intended as exam-
ples to produce HepMC event files.

6This will result in changing how contributions formally beyond the accuracy of Ckkw-l MEPS
method. Together with variations of the merging scale value, changing default choices can give (very)
conservative error estimates for the method.
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In case of matrix element merging, this is however not the end. As discussed above,
events in MEPS come with weights to include effects of Sudakov resummation, αs and
PDF running. For a merged prediction all events need to have the correct relative
weight, consisting of the accepted cross section, and the “merging weight” of the current
event. The accepted cross section is not known a priori. We solved this puzzle earlier by
rescaling the Pythia-histograms with pythia.info.sigmaGen() after the event loop,
for each jet multiplicity separately. HepMC does not allow rescaling of all event weights
after the event generation, so this trick is not an option. Instead, we need to estimate
the cross section before we print merged HepMC events to an output file. How this can
be done is illustrated in main84.cc. If you have estimated the accepted cross section,
you can set the correct weight of each HepMC output event by invoking

hepmcevt->weights().push back( pythia.info.mergingWeight() *

normhepmc );

before filling the event with the fill next event method. Here, normhepmc is the
accepted cross section for the current jet multiplicity. Finally, Rivet analyses sometimes
require the full, merged cross section to e.g. normalise plots to cross sections, which is
also not know in advance. Since Rivet reads this cross section from the cross section
information stored in the last event, here, it is enough to sum the correct weight of each
HepMC event, and set the cross section of the last event in the HepMC file to this sum.
This is also illustrated in main84.cc.

Have you come this far?
Then you hold a general main program for multi-jet merging, which you can use to

generate LHC events.
Congratulations!

A The Event Record

The event record is set up to store every step in the evolution from an initial low-
multiplicity partonic process to a final high-multiplicity hadronic state, in the order that
new particles are generated. The record is a vector of particles, that expands to fit the
needs of the current event (plus some additional pieces of information not discussed here).
Thus event[i] is the i’th particle of the current event, and you may study its properties
by using various event[i].method() possibilities.

The event.list() listing provides the main properties of each particles, by column:

• no, the index number of the particle (i above);

• id, the PDG particle identity code (method id());

• name, a plain text rendering of the particle name (method name()), within brackets
for initial or intermediate particles and without for final-state ones;
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• status, the reason why a new particle was added to the event record (method
status());

• mothers and daughters, documentation on the event history (methods mother1(),
mother2(), daughter1() and daughter2());

• colours, the colour flow of the process (methods col() and acol());

• p x, p y, p z and e, the components of the momentum four-vector (px, py, pz, E), in
units of GeV with c = 1 (methods px(), py(), pz() and e());

• m, the mass, in units as above (method m()).

For a complete description of these and other particle properties (such as production and
decay vertices, rapidity, p⊥, etc), open the program’s online documentation in a browser
(see Section 2, point 6, above), scroll down to the “Study Output” section, and follow
the “Particle Properties” link in the left-hand-side menu. For brief summaries on the less
trivial of the ones above, read on.

A.1 Identity codes

A complete specification of the PDG codes is found in the Review of Particle Physics [3].
An online listing is available from

http://pdg.lbl.gov/2008/mcdata/mc particle id contents.html

A short summary of the most common id codes would be

1 d 11 e− 21 g 211 π+ 111 π0 213 ρ+ 2112 n
2 u 12 νe 22 γ 311 K0 221 η 313 K∗0 2212 p
3 s 13 µ− 23 Z0 321 K+ 331 η′ 323 K∗+ 3122 Λ0

4 c 14 νµ 24 W+ 411 D+ 130 K0
L 113 ρ0 3112 Σ−

5 b 15 τ− 25 H0 421 D0 310 K0
S 223 ω 3212 Σ0

6 t 16 ντ 431 D+
s 333 φ 3222 Σ+

Antiparticles to the above, where existing as separate entities, are given with a negative
sign.
Note that simple meson and baryon codes are constructed from the constituent (anti)quark
codes, with a final spin-state-counting digit 2s + 1 (K0

L and K0
S being exceptions), and

with a set of further rules to make the codes unambiguous.

A.2 Status codes

When a new particle is added to the event record, it is assigned a positive status code
that describes why it has been added, as follows:
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code range explanation
11 – 19 beam particles
21 – 29 particles of the hardest subprocess
31 – 39 particles of subsequent subprocesses in multiple interactions
41 – 49 particles produced by initial-state-showers
51 – 59 particles produced by final-state-showers
61 – 69 particles produced by beam-remnant treatment
71 – 79 partons in preparation of hadronization process
81 – 89 primary hadrons produced by hadronization process
91 – 99 particles produced in decay process, or by Bose-Einstein effects

Whenever a particle is allowed to branch or decay further its status code is negated (but it
is never removed from the event record), such that only particles in the final state remain
with positive codes. The isFinal() method returns true/false for positive/negative
status codes.

A.3 History of parton shower branchings

The two mother and two daughter indices of each particle provide information on the
history relationship between the different entries in the event record. The detailed rules
depend on the particular physics step being described, as defined by the status code. As
an example, in a 2 → 2 process ab → cd, the locations of a and b would set the mothers
of c and d, with the reverse relationship for daughters. When the two mother or daughter
indices are not consecutive they define a range between the first and last entry, such as a
string system consisting of several partons fragment into several hadrons.

There are also several special cases. One such is when “the same” particle appears as
a second copy, e.g. because its momentum has been shifted by it taking a recoil in the
dipole picture of parton showers. Then the original has both daughter indices pointing
to the same particle, which in its turn has both mother pointers referring back to the
original. Another special case is the description of ISR by backwards evolution, where the
mother is constructed at a later stage than the daughter, and therefore appears below in
the event listing.

If you get confused by the different special-case storage options, the two
pythia.event.motherList(i) and pythia.event.daughterList(i) methods are able
to return a vector of all mother or daughter indices of particle i.

A.4 Colour flow information

The colour flow information is based on the Les Houches Accord convention [4]. In it, the
number of colours is assumed infinite, so that each new colour line can be assigned a new
separate colour. These colours are given consecutive labels: 101, 102, 103, . . . . A gluon
has both a colour and an anticolour label, an (anti)quark only (anti)colour.

While colours are traced consistently through hard processes and parton showers, the
subsequent beam-remnant-handling step often involves a drastic change of colour labels.
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Firstly, previously unrelated colours and anticolours taken from the beams may at this
stage be associated with each other, and be relabelled accordingly. Secondly, it appears
that the close space–time overlap of many colour fields leads to reconnections, i.e. a
swapping of colour labels, that tends to reduce the total length of field lines.
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